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Résumé

Dans le domaine des systèmes de transport intelligents (ITS), le traitement des
données de trajectoire est essentiel mais difficile, car les trajectoires routières et
aériennes sont souvent de grande dimension. Cette complexité peut entraver les
tâches d’inférence telles que la prédiction, la compression, le filtrage et la classifica-
tion. Pour répondre à cette problématique, cette thèse est structurée en deux parties
qui explorent différentes méthodes d’apprentissage automatique statistique et non
supervisé appliquées aux données de trajectoires. Les applications couvertes inclu-
ent la détection d’anomalies dans les données en continu, la compression en temps
réel, ainsi que le lissage et le filtrage des trajectoires des véhicules routiers. Ces tech-
niques ont été utilisées dans des contextes tels que la compression de données dans
les réseaux Vehicle-to-Everything (V2X), la reconnaissance de comportements de
conduite imprudents et l’extraction de trajectoires de véhicules à partir de vidéos
de trafic.

La première partie de la thèse présente un modèle de signal nouvellement pro-
posé, appelé modèle d’impulsions aléatoires (RXID), pour représenter les trajec-
toires routières. Des analyses comparatives des noyaux de covariance et de leurs
vecteurs propres correspondants ont été effectuées pour valider le modèle par rap-
port à l’ensemble de données NGSIM 101. Ce modèle a été utilisé dans trois appli-
cations différentes, à savoir deux algorithmes de compression de données conçus
pour atténuer la fréquence des transmissions de véhicule à véhicule (V2V) et un
modèle dynamique pour le suivi et le filtrage multi-objets de véhicules routiers à
partir d’un flux vidéo. .

Bien que la détection d’anomalies soit une discipline qui a atteint un certain
niveau de maturité, elle n’a pas été développée de manière approfondie dans le
cadre de la détection d’anomalies dans les flux de données. La suite de cette thèse
est consacrée à la conception d’un algorithme de détection d’anomalies en temps
réel pour de tels paramètres. Cet algorithme est basé sur deux composants clés : la
réduction de la dimensionnalité et le test d’hypothèses en ligne. Une application
concernant la reconnaissance d’un comportement de conduite anormal est présen-
tée à titre d’exemple, suivie d’une comparaison avec deux méthodes courantes pour
démontrer la valeur de l’approche.

La deuxième partie de cette thèse présente une technique de vision par ordina-
teur (CV) pour comparer le développement temporel de deux orages dans des péri-
odes historiques distinctes, résultant en un système d’interrogationmétéorologique
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qui permet de rechercher des jours météorologiques similaires. Il est également dé-
montré que la réduction de la dimensionnalité s’avère bénéfique pour visualiser et
comparer les schémas d’arrivée basés sur les données de trajectoire de l’aéroport
de Dallas Fort Worth (DFW). La méthodologie proposée présente un potentiel
prometteur non seulement pour la visualisation des données, mais également pour
le développement de méthodes pouvant apprendre des données open source con-
cernant les décisions des contrôleurs aériens. Des sujets supplémentaires, tels que
la segmentation non supervisée des séries temporelles, sont présentés, ainsi qu’une
extension subtile du cadre probabiliste introduit dans la première partie pour re-
connaître les approches non conformes, précurseurs cruciaux des atterrissages non
stabilisés.

La thèse se termine par un dernier chapitre résumant les principales contribu-
tions et offrant des perspectives sur les travaux futurs.

Mots Clés: modélisation de trajectoire, filtrage, lissage, suivi, compression de données,
réduction de dimensionnalité.
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Abstract

In the field of Intelligent Transportation Systems (ITS), trajectory data processing
is essential yet challenging, as road and aerial trajectories are often high-dimensional.
This complexity can hinder inference tasks such as prediction, compression, filter-
ing, and classification. To address this issue, this dissertation is structured into two
parts that explore different statistical and unsupervised machine learning meth-
ods applied to trajectory data. Applications covered include anomaly detection in
streaming data, real-time compression, and the smoothing and filtering of road ve-
hicle trajectories. These techniques have been used in contexts such as compress-
ing data in Vehicle-to-Everything (V2X) networks, recognizing reckless driving
behavior, and extracting vehicle trajectories from traffic videos.

The first part of the dissertation introduces a newly proposed signal model,
denoted as the Random Impulses Model (RXID), for representing road trajecto-
ries. Comparative computation of the covariance kernels and their correspond-
ing eigenvectors were performed to validate the model against the NGSIM 101
dataset. This model has been utilized in three different applications, namely, two
data compression algorithms designed to mitigate the frequency of Vehicle-to-
Vehicle (V2V) transmissions, and a dynamic model for multi-object tracking and
filtering of road vehicles from a video stream.

Although anomaly detection is a discipline that has reached a certain level of
maturity, it has not been thoroughly developed in the context of detecting anom-
alies in streaming data. The subsequent part of this dissertation is devoted to the
design of a real-time anomaly detection algorithm for such settings. This algorithm
is based on two key components: dimensionality reduction and online hypothesis
testing. An application regarding abnormal driving behavior recognition is pre-
sented as an example, followed by a comparison against two common methods to
demonstrate the value of the approach.

The second part of this dissertation presents a Computer Vision (CV) tech-
nique for comparing the temporal development of two thunderstorms in distinct
historical periods, resulting in a meteorological querying system that allows search-
ing for similar weather days. It is also shown that dimensionality reduction proves
beneficial in visualizing and comparing arrival patterns based on trajectory data
from Dallas Fort Worth Airport (DFW). The proposed methodology exhibits
promising potential not only for data visualization but also for developing meth-
ods that can learn from open-source data regarding air traffic controller decisions.
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Additional topics, such as unsupervised segmentation of time series, are presented,
along with a subtle extension of the probabilistic framework introduced in the first
part to recognize non-compliant approaches, crucial precursors to non-stabilized
landings.

The dissertation concludes with a final chapter summarizing major contribu-
tions and providing perspectives on future works.

Keywords: trajectory modeling, filtering, smoothing, tracking, data compression, di-
mensionality reduction.
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Introduction

Abstract
In this chapter, we present an overview of Intelligent Transportation Systems

(ITS). Despite ITS being a vast and well-researched discipline, the emergence of
new sensors and technologies continues to require advancements in signal process-
ing, particularly with respect to vehicle trajectories. This is the motivation for our
studies, which will be presented along with the goals and scope of the dissertation.
The significance of the proposed work will be briefly discussed here, with a more
profound exploration to follow in subsequent chapters. Additionally, we provide
an overview of the thesis structure.
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1.1 CONCEPTS

1.1.1 Intelligent Transportation Systems (ITS)

Transportation plays an indispensable role in modern daily life. According to data
from the American Automobile Association (AAA), the average American spends
51 minutes driving each day, covering more than 220 miles per week. This equates
to an astounding annual distance of nearly 11,500 miles [4]. The study also high-
lights an upward trend in driving time, with a rise of approximately 5% over the
two years from 2014. Notably, the proportion of drivers above the age of 75 has
surged, showing a 23% increase [4]. As individuals spend more time driving daily
and continue to drive into their later years, the demand for a safer and more com-
fortable driving experience has substantially grown.

Moreover, the implications of increasing transportation activity on the environ-
ment and human health warrant attention. Road travel is accountable for nearly
two-thirds of the Carbon Dioxide emissions within the transportation sector of
the European Union (EU), thus making it a chief contributor to air pollution and
sound disturbances in urban regions [5]. This heralds a prominent health concern
for the foreseeable future. Sustained contact with polluted air and noise has been
associated with a multitude of cardiovascular, neural, and auditory disorders. In
response, the European Commission (EC) has put forth its vision for European
transportation [6], aspiring to achieve a ”green, digital transformation and become
more resilient to future crises”. The proposition advocates for a 90% reduction in
emissions by 2050, with an extensive implementation of a ”smart, safe, accessible
and affordable transport system.”

Intelligent Transportation Systems (ITS) are considered as a potential solu-
tion to the multifaceted challenges facing modern road transport. By examining
factors that can be modified, ITS aims to create a more comfortable, efficient, and
sustainable model of road transport. While the broad spectrum of considerations
within ITS extends to policymaking and infrastructure planning, this dissertation
focuses on a specific component: the potential application of a vast amount of data
collected from an extensive array of deployed sensors. The integration and analysis
of this data could lead to the development of enhanced decision-making tools and
onboard automotive systems that significantly improve the driving experience.

1.1.2 Advanced Driver-Assistance Systems (ADAS)

One of the early examples of ITS in modern vehicles is the ADAS which provide
safety and automated features for drivers in real-time. Examples include:

• Blind-spot monitor,
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• Camera(s)
• Long-range radars
• Short-range radars: forward-

mounted, side-mounted and 
rear-mounted

SENSORS

CONTROLLERS

ELECTRONIC 
CONTROL UNITS

PROCESSORS

VEHICULAR
COMMS UNIT

Figure 1.1: Key components of ADAS.

• Forward Collision Warning,
• Intersection Assistant,
• Lane Departure Warning System,
• Electronic Stability Control (ESC)…

The key components of an ADAS system are shown in Figure 1.1. Among
these, sensors are the most essential, with the CCD camera, long-range and short-
range radars (such as ultrasonic, LIDAR) being common choices. Controllers and
ECUs are required if control algorithms exist to provide input to the car actuators,
for example, the Anti-Lock Braking System (ABS). Processors are the compo-
nents where perceptive and decision-making algorithms are run, and depending
on the individual vehicle, a modem device for communication with other vehicles
using a Vehicle-to-Everything (V2X) network might be equipped.

It’s worth noting that ADAS are suggested for incorporation within a broader
framework pertinent to the autonomy level a vehicle can accomplish. The So-
ciety of Automotive Engineers (SAE) presents six levels of autonomous driving,
wherein levels 0, 1, and 2 could potentially be attained through the inclusion of
ADAS in vehicles [7] alone, without any additional integration into higher levels,
like a transport infrastructure. Specifically, at levels 0, 1, and 2, an automated
regulator can manage the brakes and acceleration, yet the vehicle stays under the
complete control of the operator. This mandates that the driver maintains full
alertness and awareness. The 3rd and 4th levels of autonomous driving assign a
portion of the driving task to the control system but still need the driver’s interven-
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ADAS

• Sensor Quality
• Performance Across 

Environments
• Sensor Fusion
• Target Detection
• Target Tracking

SENSORS

• Human-machine Interface
• Anomaly Detection
• Path Prediction
• Scenario Recognition

ASSIST & CONTROL

• Data Encryption
• Homomorphic Encryption
• Malicious Network Attacks

PRIVACY & SECURITY

• Sensor Failures.
• Software Vulnerabilities
• Radar Interference
• Verifiability Of Algorithms

SAFETY & ROBUSTNESS

Figure 1.2: Exemplary challenges faced when developing ADAS applications.

tion when required. Level 5 signifies the pinnacle of autonomy, with no human
intervention needed, even during emergencies. Although extensive research is in
progress, the general agreement is that the obstacles tied to ADAS design (Figure
1.2) persist as similar to those of autonomous driving, but only supplemented by
the requirement of planning and control algorithms for the generation of control
inputs.

As presented in [8], most of the current quoted annual revenues for the ADAS
market range from $5 billion to $8 billion, which demonstrates a substantial poten-
tial for growth when juxtaposed with audio and telematics quoted at $30 billion,
and climate control at $60 billion. Despite several optimistic predictions about the
adoption rate of ADAS, the utility of these systems is still generally considered
marginal, while safety concerns cast a significant shadow on the adoption trends.
This underwhelming performance is not generally attributed to the market’s cau-
tionary attitude, but rather because ADAS consist of a large number of separate yet
interconnected challenging engineering problems, the reliable solutions for which
have only recently begun to emerge.

Figure 1.2 presents a non-exhaustive list of problems that engineers usually face
when developing ADAS applications, in addition to other common constraints
such as cost and hardware limitations. For example, many ADAS applications
require the detection of various road objects as prerequisites - such as vehicles,
traffic signs, and pedestrians. State-of-the-art detection under diverse lighting
conditions and appearances has only been achieved with the advent of deep neural
networks [9]. As clearly depicted in Figure 1.2, barring hardware-specific issues,
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the majority of challenges tend to be tied to the handling of vehicle trajectory
data in some form. We posit that addressing this fundamental hurdle will induce
substantial enhancements across an array of ADAS system developments, hence
marking it as a crucial gap in current research that demands urgent attention. For
now, we will momentarily set aside this topic, resuming with a more in-depth
exploration later, in Section 1.2.

1.1.3 Vehicular Communications and V2X

While the challenge of autonomous driving is already significant, the broader aim
of ITS often extends beyond the safety and comfort of individual drivers, to a
more collective perspective. Essentially, coordinating multiple vehicles can unlock
further potential for enhancing safety and improving the efficiency of current trans-
port systems. This has required the creation of a cross-vehicle communication link,
facilitating the transmission and receiving of data.

A key example of this concept is highway platooning, where vehicles, often
trucks, travel in close proximity to reduce air drag and consequently, save on fuel.
This close formation also allows the convoy to occupy a relatively constant area of
the road, helping to reduce traffic congestion. The primary challenge lies in coordi-
nating these convoys in a tightly controlled manner, requiring continuous transmis-
sion of control parameters, such as speed and direction with stringent constraint
on delay to ensure safety [10].

The notion of communication between vehicles can be actualized via a Vehicle-
to-Vehicle (V2V) network, capable of extension into Vehicle-to-Infrastructure
(V2I), and Vehicle-to-Network (V2N), and collectively referred to as Vehicle-to-
Everything (V2X). Analogous to the Internet-of-Things (IoT), V2X delivers a
protocol for road entities—including vehicles, roadside sensors, traffic signals, and
even data centers—to interact. This enables an expansive perception domain that
surpasses the capabilities of individual participants, and the introduction of Col-
lective Perception (CP) [11] broadens the perception scope to even those not
equipped with V2X, such as pedestrians, motorcyclists, and road laborers. This
can be accomplished with assistance from diverse sensors, inclusive of those in-
stalled on vehicles, road-side units, and traffic cameras, and the transfer of data
via the Collective Perception Message (CPM). The evolution of the V2X concept
has roots in preliminary research in Mobile Ad-Hoc Networks (MANET) and
Vehicular Ad-Hoc Networks (VANET). Below are examples of already-deployed
V2X services:
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Example: Day One V2X Services

Examples of Day One V2X Services (as of 2019) include [12]:

1. Emergency electronic brake
light

2. Emergency vehicle approaching

3. Slow or stationary vehicle(s)

4. Traffic jam ahead warning

5. Hazardous location notifica-
tion

6. Road works warning

7. Weather conditions

8. In-vehicle signage

9. In-vehicle speed limits

10. Probe vehicle data

11. Shockwave damping

12. GLOSA / Time To Green (TTG)

13. Signal violation / Intersection
safety

14. Traffic signal priority request for
designated vehicles

Figure 1.3: Vehicle overtaking scenario. The red vehicle can be rendered visible to the white
vehicle through the continuous beaconing of its position and other information through the
wireless medium with V2X [1].

Figure 1.3 depicts a scenario in which V2X technology could prove beneficial.
The white vehicle intends to overtake the long truck; however, its perception is lim-
ited due to the red vehicle being concealed from its line of sight. In such a situation,
if both the red and white vehicles are equipped with V2X communication systems,
they would be able to detect each other through the continuous broadcasting of
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their respective positions via a standardized message format, called Cooperative
Awareness Message (CAM).

While V2X encompasses a wider range of road scenarios, including notifica-
tion of forthcoming road hazards and vehicle platooning, the scenario represented
in Figure 1.3 is one of the initial proposals and continues to be fundamental when
discussing V2X’s benefits. It becomes apparent once more that trajectory data
forms the core of the information transmitted over the wireless medium. As such,
enhancing our capability to process trajectory data more proficiently will indu-
bitably yield positive outcomes in designing a more efficient vehicular commu-
nication system.

A more thorough introduction to V2X, as well as recent developments per-
taining to data compression and congestion control will be presented in the corre-
sponding chapter (Chapter 5).

1.2 THE NEED FOR TRAJECTORY DATA PROCESSING

1.2.1 Motivation

The preceding discussion underscores the significance of Trajectory Data Process-
ing within numerous ITSs applications. In this section, we address the main dif-
ficulties encountered in processing this category of data and the potential impact
that theoretical advancements in this field could potentially foster. These encom-
pass the evolution of ADAS, enhancement of data fusion and object tracking per-
formance of radar systems, in addition to the realization of a more efficient data
communication scheme amongst V2X participants. This, in turn, could improve
the capacity, responsiveness, and quality of service for the entire network. Fur-
thermore, owing to its time-series characteristics, it could also make significant
contributions to the broader fields of signal processing and unsupervised machine
learning.

As shown above, the nature of data frequently emerging in ITS is predomi-
nantly time-series. This data type, characterized by its high-dimensional complex-
ity, often introduces numerous processing challenges. One prominent difficulty is
known as the “curse of dimensionality,” which complicates machine learning tasks
due to the need for larger datasets, limited availability of data visualization tools,
and latent autocorrelation features. Furthermore, the absence of event localization
adds an additional layer of complexity to the analysis, as very often, it requires si-
multaneous solving of both identification and classification tasks. Adding to these
challenges, time-series data is often tainted by noise, necessitating the filtering
process that requires numerous assumptions about the noise’s characteristics.

As an example of time series data, Figure 1.4 shows the raw trajectories ob-
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Figure 1.4: Exemplary time series data in ITS: raw trajectories of vehicles extracted froma video
sample of the NGSIM-101 dataset.

tained through the tracking of vehicles from a video sample captured by a traf-
fic camera. Each trajectory comprises two components: lateral and longitudinal,
which represent lane-changing and speed characteristics, respectively. It is also
obvious that this highway has five lanes and that the traffic flow is relatively stable.
An ADAS that warns anomalous driving behavior will have to process this type
of data. In the following, we provide a few additional examples of how trajectory
data processing can assist ADAS, autonomous driving, and V2X applications.

Example: Road Object Recognition and Tracking

Object recognition and tracking constitute pivotal components in the devel-
opment of Advanced Driver Assistance Systems (ADAS) and autonomous pi-
loting designs. These systems require the vehicle to accurately identify diverse
elements in its environment, including other vehicles, pedestrians, lane mark-
ings, and traffic signs (Figure 1.5). Besides recognition, estimating the move-
ment of these objects is critical for efficient trajectory planning. Notably, mo-
tion information can assist the recognition process in cluttered environments,
and conversely, accurate recognition contributes to enhanced tracking perfor-
mance. This reciprocal relationship underscores the need for integrating mo-
tion data with object appearance, a central concept in many Multi-Object
Tracking (MOT) algorithms, such as SORT [13]. Consequently, processing tra-
jectory data helps to augment the efficacy of computer vision tasks.
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Figure 1.5: This image portrays a road scene in Ho Chi Minh City, Vietnam, with various road
objects annotated. It’s important to note the presence of numerous potential false sources
that could complicate the recognition process, including billboards and vehicles parked on
the pavement.

Figure 1.6: To avoid collision, the warning system usually has to anticipate the trajectories of
nearby vehicles (orange curves) as well as the trajectory of itself (yellow curves). Trajectory
prediction is one of the most important task in ITS.

Example: Collision Avoidance Warning

CollisionAvoidance forms a critical element of autonomous driving, with trajec-
tory prediction as its cornerstone. This component allows for the anticipation
of the movements of neighboring vehicles, proffers warnings about impending
collision risks, and facilitates the formation of plans to avert such threats. The
literature surrounding this issue is both abundant and varied [14], reinforcing
its position as an integral subset of trajectory data processing.
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Example: Anomalous Driving Behaviour Detection

Applications such as the detection of wrong-way driving or reckless driving [15]
require continuous observation of the vehicle’s trajectory over a certain period
of time. Often, it is compared to a standard collection of behaviors for classifi-
cation purposes [16]. This application routinely incorporates various machine
learning techniques, particularly those relevant to time series data processing,
within which trajectory analysis is a case in point.

Example: V2X Collective Perception (CP) Data Compression

CP refers to a V2X service that facilitates the exchange of information regard-
ing detected objects with other road users, via sensors mounted either on a
vehicle or a road-side unit. ETSI Technical Report 103 562 v2.1.1 [3] presented
simulation results demonstrating CP’s substantial impact on channel resources,
notably bandwidth, leading to a worsened Packet Delivery Ratio (PDR). Several
mitigation strategies were proposed to address the issue, encompassing mes-
sage rate regulation, congestion control mechanisms, and support for multi-
channel operation. Nevertheless, as evidenced in Chapter 5, by simply consid-
ering the vehicle’s trajectory, we can effectively decrease the message rate by
2.5 times, without significantly compromising information related to the trajec-
tory, with no additional channel resources required.

Some of these examples encompass a significant portion of the content to be
discussed in the ensuing chapters. This exploration is facilitated by initially analyz-
ing the properties of road trajectory data via a novel mathematical model, followed
by themodel’s adaptation to a diverse range of applications, extending fromADAS
design to V2X data compression (Figure 1.7).

1.2.2 Model-based vs Model-free

Trajectory data processing, like all time series processing, can be divided into two
main categories: model-based and model-free. The former involves deriving a
model for road trajectory from the theoretical understanding of the underlying
physical processes, such as the acceleration or steering mechanism of the vehicle
[17–19]. Further psychological assumptions about human reactions have led to
more sophisticated models, such as car-following models [20] and lane-changing
models [21]. A significant advantage of trajectory models is their simplicity, which
often enables the derivation of mathematical properties, thereby leading to a more
comprehensive understanding of their performance and potential shortcomings.
However, a key disadvantage is that the assumptions made in these models might
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Trajectory Modeling
Random Impulses – Ch.3

V2X Data Compression
Ch. 5, Ch. 6

Anomaly Detection
Ch. 4

Object Tracking
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Figure 1.7: The development of a trajectory model engenders a multitude of applications in
ADAS and V2X. While this dissertation primarily centers slightly more on the application of
V2X Data Compression (presented in Chapter 5 and 6), the generalizability of themodel holds
the potential to traverse well beyond the confines of V2X and ADAS, as shown in other chap-
ters.
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lack rigor and may not correspond well to various traffic scenarios.
On the other hand, model-free trajectory models, such as those modeled with

Hidden Markov Chains and deep generative models [22,23], often require a large
dataset for training. Although this approach greatly simplifies the model design
process and can represent complex nonlinear relationships between factors, the
robustness and validity of these models are less understood. This can pose a risk
for safety-critical applications, where the performance of the models cannot be
guaranteed. Nevertheless, these models have achieved tremendous success, at least
on benchmark datasets.

The general engineering problem extends beyond the raw predictive power of
the trajectory models. Factors such as computational complexity also play a cru-
cial role, especially when implementing algorithms on embedded platforms that
require light memory footprints. Battery-powered devices impose additional con-
straints on energy demand, which brings to fore considerations about the cost-
effectiveness of the solution. In these respects, model-based trajectory models
often take the lead and are commonly found in most Intelligent Transportation
System (ITS) components, such as smart traffic light controllers, V2X communi-
cation devices, and various onboard electronic components.

One could argue that the choice between model-free and model-based ap-
proaches mainly depends on the specific problem at hand, as well as any additional
constraints imposed. Another question to consider when choosing a method, or
even when deciding to develop a new model, is whether the problem at hand re-
quires the use of a more complex model, such as a deep neural network, or if cur-
rently available models are enough. The answer to this question often emerges after
a lengthy process of trial and error. However, in some instances, a deep theoretical
analysis of the model could yield the same answer. This undoubtedly will lead to
cost-saving, reduced product development time and confidence in the reliability in
the performance of the model.

1.2.3 Datasets

To successfully execute model conception, analysis, and validation, a real-world
dataset of vehicle trajectories is essential. Three notable datasets, known for pro-
viding high-quality trajectory data suitable for in-depth traffic flow analysis, are:

1. The well-regarded NGSIM dataset [24], provided by the U.S. Department
of Transportation. This dataset provides high temporal resolution traffic
data (at 10Hz) collected from southbound US 101 and Lankershim Boule-
vard, as well as eastbound I-80 in Emeryville, CA.

2. The Hanshin Expressway Dataset [25], which comprises five sets of one-
hour traffic data collected from 2km sections of the Hanshin Expressway
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Route 11, Route 4, and Route 13 in Japan. The dataset encapsulates nearly
all vehicles and also includes road surface information.

3. The WUT-NGSIM dataset [26] offers high-quality data with 10Hz tem-
poral resolution as well. Similar to NGSIM, this dataset uses an array of
high-speed cameras to provide stable video streams for a sophisticated data
processing framework, which employs a Kalman filter and Hungarian algo-
rithm for tracking and estimation.

The NGSIM dataset has been widely used in research for various purposes, such as
deriving lane-changing models [27], classifying driving styles [28], and predicting
trajectories [29]. This dissertation also employs the NGSIM dataset to develop
trajectory models, but it delves a step further to offer a more profound theoretical
understanding of the physical processes observed in this dataset.

1.3 PROBLEMS, AIMS AND OBJECTIVES

The preceding discussion has shown that processing trajectory data (or timeseries)
is central in ITS. In many scenarios, a suitable trajectory model must be chosen.
The development of a model-free trajectory model would necessitate the availabil-
ity of a trajectory dataset. It is obvious from the discussion in Section 1.2.3 that
the size of these available datasets is generally small, often consisting of only a few
hours and thousands of trajectories of vehicles collected exclusively in highway
data scenarios. As a result, the use of a deep generative model could raise con-
cerns about reliability and generalization capability due to the unbalanced dataset.
Moreover, the majority of models used in automotive engineering still need to
have their performance guaranteed. This is only possible with a deep analytical
study. Given that the majority of deployment platforms are embedded systems,
computational cost, hardware price, and execution time are also critical factors.

These considerations have driven demand for the availability of a model-based
model that is still capable of learning and adapting, but to a point that still leaves
room for analysis, deriving performance guarantee bounds, and wide adaptation
in various ADAS and autonomous driving applications. It must also be computa-
tionally lightweight enough to be implemented on time-critical systems.

Most model-based counterparts in literature, however, suffer from different
weaknesses, which we shall detail as follows.

1. Physical models are especially suitable for controlling engine speed and ac-
tuators, like ABS. They effectively capture physical effects, such as friction.
However, these models are often deemed too detailed for analysis on a larger
scale, such as on a road segment.
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Figure 1.8: Illustration of a wrong-way driving scenario that can threaten safety. Anomaly
detection in this case could be very useful.

2. Car-following and lane-changing models are frequently too complex for
comprehensive analysis since they also simulate interactions between vehi-
cles, such as the distance to the leading car and their relative velocities. Find-
ing solutions often involves solving an intertwined system of partial differ-
ential equations, a task that is far from trivial.

3. Current kinematic models, such as those assuming constant velocity or con-
stant yaw rate, typically have a very short prediction horizon. Despite this,
they perform exceptionally well in terms of computational cost and simplic-
ity, making them ideal for implementation on embedded platforms where
deep analytical analysis is possible. However, the limited prediction horizon
can be attributed to their failure to account for various factors such as the
geometrical shape of the road and the effects of nearby vehicles.

Regarding this aspect, this dissertation aims to address this gap by introducing two
models for the lateral and longitudinal components of a road vehicle trajectory,
termed Random Impulses Models. Their validity is demonstrated by verifying
against real-world trajectories, for which we use the NGSIM dataset. Through
the computation of covariance kernels, it can be further established whether infor-
mation has been fully extracted or not. This enhances confidence in the validity
of the models and also bolsters the assurance of using the results derived in this
dissertation for various applications.

While the rationale and analysis of the models are important, the application
aspects should not be underestimated. This dissertation also explores various ma-
chine learning, filtering, and target tracking problems that could benefit from the
newly introduced trajectory models. In particular, we address the following issues
in depth:

• Dimensionality reduction of trajectory data. By reducing dimensionality,
the representation (or embedding) becomes more amenable to visualization
and other machine learning tasks, such as trajectory prediction and cluster-
ing.

• Data compression. With the possibility of representing roughly the same
amount of information about the trajectory with a vector of fewer compo-
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nents, we can compress trajectory data. While it is straightforward to per-
form offline batch compression of trajectory data, performing online com-
pression is more challenging since the vehicle’s full trajectory has not yet
been completed. This problem has significant implications for vehicular net-
works, such as V2X. Compressing data could allow for serving more road
participants, reducing the package collision rate, and improving the trans-
mission range.

• Spherical Codec is the first data compression algorithm for CAMs, which
relies on predicting future trajectory and transmitting information about a
trajectory’s representation rather than the trajectory itself in the time domain.
This approach has led to a 2.5 times improvement in the channel busy ratio
for the same number of road participants.

• Linear Extrapolation over the Mean-Subtracted Trajectory (LEMONS) is an-
other simple algorithm which can be proven to be the optimal transmission
algorithm that works directly with the trajectory in the time domain. It
leverages the introduced models for optimal performance guarantees and
performs comparably to the Spherical Codec. However, it surpasses the
Spherical Codec in computational cost due to the absence of a representa-
tion estimator.

• Anomaly Detection is another important application. Figure 1.8 illustrates
an exemplary scenario where a car oversteps the road centerline and drives
in the wrong direction relative to a truck. Detecting such scenarios could
be lifesaving. Traditional approaches may require access to a knowledge
base about lane divisions, direction assignment, and so on. However, with
an unsupervised learning approach, there is no such need, and as a result,
detection algorithms can be adapted more quickly to various road scenarios,
even in countries with different driving rules. The key challenge is that while
this method is effective for offline classification (i.e., classification when the
whole trajectory is available), online classification (i.e., classification when
only part of the trajectory is available) is much more difficult. The solu-
tion typically involves using a sliding window and repeated decomposition
of trajectories [30, 31], but these methods neglect the autocorrelation fea-
ture between data points lying across different sliding windows. To help ad-
dress these problems, we present three anomaly detection algorithms, two of
which serve the same purpose, while the third one serves a slightly different
purpose, as follows:

• (1) The Likelihood Method for Anomaly Detection is similar to the compu-
tation of the Bayes factor for a presumed distribution of the representation
of trajectory data, which acts as the prior distribution. In particular, we
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introduce a vanilla case and a noise-corrupted case, which lead to two real-
time hypothesis testing algorithms that reject the null hypothesis that the
trajectory is nominal.

• (2) The Bayesian Method performs real-time hypothesis testing on the rep-
resentation domain, but this approach leads to difficulty in the computa-
tion of a generalized Chi-square distribution. We propose an approxima-
tion method to use the Gaussian distribution instead, when the number of
observations is sufficiently large.

• (3) An anomaly localization algorithm based on nearest neighbors, which ex-
ploits the non-correlation between Functional Principal Component Analy-
sis (FPCA) components to avoid resampling the training set every time
a new observation is received. This algorithm is capable of localizing the
anomaly in time, and we propose its application in detecting anomalous air-
craft landing trajectories.

• Another application is related to filtering and smoothing of trajectory data.
The Random Impulses Models provide justifications and the correct imple-
mentation of the process model, rather than employing arbitrary random
walk process models like those used in [13].

• Estimation and learning of model parameters. Here, the solution emerges
not directly, but through an examination of an associated problem that grap-
ples with the intertwined challenges of segmenting the time series and as-
certaining the number of modes. In addressing this, we utilize a Dirichlet
Prior to identify the number of change points, and subsequently detect these
change points within a hypothesis testing framework.

1.4 SIGNIFICANCE

The previous section underscores the potential transformative impact the develop-
ment of such a model could have on various facets of automotive applications. We
highlight several avenues through which our work might bolster the growth of this
field:

1. Our Random Impulse models are both simple and lightweight, making
them ideal for use on embedded platforms where energy and computational
constraints are rigorous.

2. These models provide valuable physical interpretation and intuition. For ex-
ample, the mean-trajectory can be interpreted as representing the regulatory
effect of drivers keeping a safe distance from each other.

3. Despite their simplicity, thesemodels boast adaptability, particularly through
adjustments of the mean-trajectory.
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4. The theoretical analysis we present clarifies the conditions that enable con-
vergence of the covariance kernel. This understanding should instill greater
confidence in applying these models to a variety of potential road scenarios.

Our Random Impulses models are poised to bring about advancements within
the fields of ITS, automotive technology, and vehicular networking. Notably, the
applications addressed in this dissertation showcase the promising potentials of
our work:

1. Two introduced codecs enable a considerable reduction in V2X channel uti-
lization during Cooperative Awareness Message (CAM) broadcasting. This
efficiency enhancement improves the network’s overall performance and ca-
pacity, particularly critical during instances of heavy congestion.

2. We offer two important anomaly detection algorithms—likelihood-based
and Bayesian-based—for the immediate detection of irregular trajectories.
These methods, applicable to vehicle paths, prove invaluable in identify-
ing instances of wrong-way, under-speed, over-speed, and reckless driving.
As such, they hold the potential to become crucial components of various
ADAS applications, fostering safer roads.

3. In the second part, we introduce a related anomaly localization algorithm.
This tool can detect unsteady aircraft approaches in real-time, providing
a critical line of defense against potential approaches that bear significant
safety risk.

4. Additionally, we present a changepoint detection framework designed to
extract notable patterns from time series data in an unsupervised manner.
This algorithm can play an important role in deriving training sets for various
machine learning algorithms that involve time series.

5. The topic of dimensionality reduction is briefly revisited as we incorporate
Multidimensional Scaling for the recognition of traffic patterns affected
by thunderstorms within the Terminal Maneuvering Area (TMA). This
method facilitates quick visualization and comparison of traffic patterns,
thereby accelerating situational understanding. It also helps various plan-
ning algorithms by considering similar weather factors.

1.5 DISSERTATION STRUCTURE

The subsequent sections of this dissertation are arranged as follows. Chapter 2
provides an in-depth background on ADAS and vehicular networking concepts,
coupled with a thorough literature review. A detailed discussion on the strengths
and weaknesses of previous researches is included, offering a clearer perspective on
the research questions presented in this chapter.
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The first part of this dissertation, entitled “Road Vehicle Trajectory: Model-
ing, Compression, Filtering and Smoothing,” encompasses Chapters 3, 4, 5, 6
and 7. Chapter 3 is devoted to the exploration of Random Impulses Models, pre-
senting both the design rationale and the validation process against the NGSIM-
101 dataset. The approximate linear forms of these models give rise to the KL
transform—a linear transformation that efficiently represents a vehicle trajectory
with minimal components. The applications of these models are explored in the
subsequent chapters. Chapter 4 introduces a probabilistic framework designed for
real-time anomaly detection in vehicle trajectory data. Chapter 5 and 6 delve into
data compression techniques in the context of vehicular networking, while Chap-
ter 7 lays out a framework for filtering and smoothing trajectories derived from
primary data sources such as aerial videos.

The second part of the dissertation features three chapters on other themes
relevant to machine learning on trajectory data. Specifically, Chapter 8 presents
a framework for unsupervised segmentation of time series, based on frequently
observed patterns. This is crucial for identifying parameters for the Random Im-
pulses Models introduced in the first part. Chapter 9 uses Multidimensional Scal-
ing (MDS) to depict the air traffic situation in various thunderstorm scenarios.
In line with this theme, Chapter 10 introduces a framework for localizing anom-
alies, specifically designed to detect unsteady aircraft approaches based on energy
characteristic curves.

The dissertation concludes with Chapter 11, where key results are recapitulated
and potential future research directions are explored. Figure 1.9 illustrates the
dependencies between the chapters, serving as a useful roadmap for readers.
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Figure 1.9: The dependency graph of the chapters. The thick arrows indicate content depen-
dency, indicating that the following chapter reused many results from the preceding chapter.
The thin arrows indicate related chapters, indicating that similar ideas may exist in the two
chapters, but it is not necessary to read one chapter before another.
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Abstract
This chapter provides a review of diverse trajectory data models, ranging from

rudimentary physical models to their intricate, interaction-driven counterparts.
Despite the abundance of available trajectorymodels, there remains an unmet need
for an novel approach. This emergent model should merge the elegance of statisti-
cal models with the requisite accuracy to cater to a broad spectrum of applications.
These findings pave the way for the forthcoming introduction of the Random Im-
pulses Models in Chapter 3. Additionally, this chapter introduces foundational
concepts related to Functional Principal Component Analysis (FPCA), also al-
ternatively known as the Karhunen-Loève Transform. Discussions pertaining to
specific applications, including anomaly detection and V2X, are reserved for their
respective subsequent chapters.
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2.1 TRAJECTORY SIGNAL MODELS

The trajectory prediction problem is central to trajectory signal processing, and
itself alone is already an extensive subject. A comprehensive review was given
in [32]. Several attempts at trajectory formalization could be divided into physi-
cal, manoeuvre-based, and interaction-aware models [32]. In physical models, the
differential equations governing the dynamics of a vehicle are derived, and inputs
to this model are usually modelled either as Gaussian white noise or by some other
simple equations. While the dynamics model is usually nonlinear, [18] showed
that linearization up to the second degree was sufficient to accurately characterize
the vehicle’s motion. In [19], the authors proposed that GPS or inertial navigation
data could be used to complement the observation model. The same idea also in-
spired the work of [33], in which the driver inputs were considered to be reactions
from surrounding objects’ dynamics, modelled as a random variable following ex-
ponential distributions. Then, Monte-Carlo sampling enabled the discovery of
future scenarios. A comprehensive review of the road vehicle dynamics model can
be found in [34–36]. While physical models can well-describe the motion of ve-
hicles down to a minimal temporal solution, they seem to be more beneficial for
automatic control system designs rather than in traffic research, mainly because
they are too complicated, and the predicted trajectory is only valid for a short pe-
riod of time. They do not generally consider the driver’s intention, road traffic
scenario, or other external factors.

The mentioned shortcomings can be remedied by switching to another class
of methods that trade resolution for lower computational complexity. The sim-
plest ones assumed constant velocity, acceleration, or yaw rate [37–39], thus it is
unsurprising to see that the prediction was still only valid for a short time. A promi-
nent extension of the above methods was to treat inputs as random variables rather
than deterministic ones. Different weights could then be applied depending on the
modelled constraints, such as road topology or aberrant acceleration values [40,41].
On the other hand, manoeuvre-based models incorporate a model for the driver’s
input on top of another model describing the vehicle’s motion, such as polynomials
and Gaussian processes. The latter approach usually results in a more usable form
than a set of nonlinear differential equations. Parameters learned from a sample
dataset or the dataset itself can be directly used for the task. This is made possible
by the introduction of a distance function, among which Euclidean [42], Haus-
dorff [43], and Dynamic Time Warp [44] are among the most popular. Gaussian
processes (GP) were shown to be surprisingly good at approximating vehicle trajec-
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tories [45,46]. In this approach, each trajectory is considered to be a path sample
from a Gaussian process characterized by an unknown covariance function. The
discrete implementation requires solving for 𝑁 2 entries of the covariance matrix
for length-𝑁 trajectories. As a consequence, the computational cost of training
could be prohibitive. In [47], the velocity field of the entire area was modelled as a
Gaussian random field, which is the generalization of the Gaussian process to two
dimensions. The motion patterns were then classified in an unsupervised manner
by imposing a Dirichlet Process as the prior distribution. Another important class
of methods couples the motion model with a driver’s intent estimator, usually real-
ized by some machine learning algorithm, such as Support Vector Machine [48],
or Hidden Markov Model (HMM) [49]. In [50], the driver’s intent was coded
into a “goal curve”, and uncertainties are learned into a set of “prefix points” fol-
lowing Gaussian distribution. The solution curve was then derived by fusing the
two, thus adjusting the goal curve to learned realistic constraints. In [51], a lane
departure and prediction algorithm was introduced that uses SVM to classify the
driver’s intent - which is modelled with an HMM and a Bayesian filter to generate
the trajectory.

With the advent of deep learning methods for trajectories - a particular in-
stance of time series - many neural network designs have been extensively studied.
Recurrent Neural Networks belong to the earliest group of design that emerged in
the field of trajectory prediction. In [52], a Long-Short Term Memory (LSTM)
network was used to predict the driver’s intention, followed by a context-reasoning
process to yield a continuous prediction. In [53], an autoencoder structure was
proposed that predicted future trajectories with a beam-search algorithm, while
in [54], the prior map generated by a Generative Adversarial Network (GAN)
was combined with a convolutional autoencoder network for modelling stochastic
multimodality.

Traffic simulators typically use interaction-based models to generate artificial
traffic demands employed in traffic research. These models assumed that the dri-
ver’s intent depends on the traffic situation around, and is therefore subjected to
the interactions between vehicles. General Motors’s traffic model is probably the
simplest and most well-known model assuming constant sensitivity and accelera-
tion of the following vehicle [55]. Improvements in the driver’s reaction to situ-
ation change were made, which resulted in the Gazis-Herman-Rothery (GHR)
model [55]. Observations about the intention to maintain a safe distance and
avoid collision provided an empirical formula for the velocity of the ego-vehicle
following the leading vehicle shown in [56, 57].

Emphasis on the interaction between vehicles as the main driving force be-
hind vehicle dynamics has led to the widespread belief that Convolutional Neural
Networks can be helpful, with most approaches employing a top-down view of
the traffic map. In [58], a hybrid LSTM-CNN was used to model road agents’
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Figure 2.1: Taxonomy of vehicle trajectory models. From left-to-right: physical model (or
dynamic model), kinematic model, statistical kinematic model and interactive model.

dynamics, shapes, and behaviours and their interactions to predict the future tra-
jectory. The advantage was the capability to predict multiple agent behaviours in
one sweep. RNN’s primary disadvantage was the fading gradient problem, which
was remedied with the introduction of the attention mechanism [59]. In [60], an
attention mechanism involving global and partial attention to surrounding vehi-
cles was used to model their relative importance to each driver. This is achieved
via multi-head attention pooling, which serves as a junction between individual ve-
hicles’ LSTM encoder and decoder. Other essential ideas involved Graph Neural
Networks [61], edge-enhance graph convolutional neural network [62], and deep
reinforcement learning [63, 64].

For a more comprehensive review, we refer readers to [32, 65] and [14].
Figure 2.1 highlights the key distinctions among the models previously pre-

sented in the literature. For batch trajectory signal processing tasks, such as trajec-
tory prediction algorithms executed on a modern System-on-Chip, deep learning
methodologies or interactive models might be excessively demanding. Further-
more, the advantages of these methods, when averaged over numerous vehicles,
may not be readily apparent. In other words, interactive models could offer clear
benefits when focusing solely on the vehicle of interest. However, when consider-
ing a scale of 1,000 or 10,000 vehicles, the benefits might become less discernible
as statistical kinematic models accurately capture performance expectations. It
should be noted that some vehicles might perform better than others. This vari-
ability in performance is a crucial reason for this dissertation’s focus on statistical
kinematic models. They maintain the simplicity of alternative models while, when
processing data on a large scale, provide performance that converges with that of
interactive models.
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2.2 THE ROLE OF TRAJECTORYMODELS IN APPLICATIONS

The preceding discussion in Chapter 1 has unveiled that the model-free approach
typically demands a considerable dataset and often culminates in an enigmatic
black-box. This complexity impinges upon the safety and robustness assessment
due to the absence of rigorous performance guarantees analysis. Additionally,
model-freemethods generally require a significant amount of computational power,
rendering them unsuitable for deployment on cost-effective, low-energy embed-
ded platforms that are ubiquitous in vehicles.

In the following, we will endeavor to highlight the role that trajectory model-
ing plays in various ADAS and V2X applications. Furthermore, we will examine
how the creation of a novel trajectory model could instigate transformative changes
across an array of applications. Many of these points will be made clear in subse-
quent chapters.

1. Operating within an identical estimation framework (e.g., Kalman filter),
prevalent models such as Constant Velocity - Constant Yaw Rate [56, 57]
deliver a time frame for which the prediction remains valid (the horizon)
that is markedly shorter than that yielded by the Random Impulses Models.
This enhancement in performance is solely derived from the utilization of a
better model, with no other variables being altered (refer to Chapter 3).

2. Within the context of anomaly detection, the presence of a trajectory model
demonstrates that certain foundational steps, such as learning of represen-
tations from a training set, can be entirely circumvented. This process not
only decreases the volume of data necessary for training and calibration of
the framework but also promotes rapid market adoption in regions with di-
vergent driving regulations, such as those where driving is done on the left.

3. In fields like radar object tracking, antenna beamforming, and traffic super-
vision, the provision of signal models can augment the efficacy of tracking
algorithms, mitigating the rate of misassociation and tracking loss. Further-
more, the model also provides a sound basis for the design of the underlying
algorithm, eliminating the need for making unwarranted assumptions such
as the state vector following a random walk.

2.3 FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS (FPCA)

2.3.1 Background

In signal processing, unitary transforms are widely used. Informally, a unitary
transformation 𝑇 is an isomorphism between Hilbert spaces H1 and H2 that pre-
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serves the inner product:

𝑇 : H1 →H2 (2.1)

〈𝑥,𝑦〉H1 = 〈𝑇𝑥,𝑇𝑦〉H2,∀𝑥,𝑦 ∈ H1 (2.2)

Very often, we will consider the particular case where H1 is the space of real
square-integrable functions under the Lebesgue measure 𝐿2(R, 𝑑𝑥) and H2 is the
sequence space 𝑙2. Fourier Transform falls under such category. It is also worth
mentioning the equivalent discrete version where both H1 and H2 are Euclidean
vector spaces R𝑛. In this case, 𝑇 is expressed as a R𝑛×𝑛 orthogonal matrix.

With a slight abuse of notation, for a given probability space (Ω,A, 𝑃) and a
measurable space (𝑆,B), the signal is modeled as a stochastic process:

{𝑋𝑡 ≜ 𝑋 (𝑡, 𝜔); 𝑡 ∈ 𝑇,𝜔 ∈ Ω} (2.3)

where 𝑡 usually denotes time. In other words, the signal can be considered as a
collection of 𝑆𝑇 random variables. We further assume that 𝑆 is an interval over R
(i.e., 𝑋𝑡 has finite support), the process’s mean is zero, is square integrable and the
statistics are known up to the second order. Let us define the covariance function:

𝑅(𝑠, 𝑡) = E [𝑋𝑡𝑋𝑠] ; 𝑡, 𝑠 ∈ 𝑆 (2.4)

𝑅(𝑠, 𝑡) defines a linear operator 𝐴 : 𝐿2(𝑆) → 𝐿2(𝑆):

𝑥 ∈ 𝐿2(𝑆), (𝐴𝑥) (𝑠) =
∫
𝑆
𝑅(𝑠, 𝑡)𝑥 (𝑡)𝑑𝑡 (2.5)

It follows from Mercer’s Theorem that the covariance function admits the fol-
lowing decomposition:

𝑅(𝑠, 𝑡) =
∞∑
𝑛=0

𝜆𝑛𝑒𝑛 (𝑠)𝑒𝑛 (𝑡) (2.6)

where the functionals 𝑒𝑛 (·) are eigenfunctions of the operator 𝐴 corresponding to
the eigenvalues 𝜆𝑛, sorted from largest to smallest. The Karhunen-Loève Theorem
says there exists a decomposition of 𝑋𝑡 [66]:

𝑋𝑡 =
∞∑
𝑛=0

√
𝜆𝑛𝑉𝑛𝑒𝑛 (𝑡) (2.7)

𝑉𝑛 =
1
√
𝜆𝑛

∫
𝑆
𝑋𝑡𝑒𝑛 (𝑡)𝑑𝑡 (2.8)
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Equation (2.7) is the KLT of 𝑋𝑡 . It could be shown that E[𝑉𝑛] = 0 and
𝑉𝑎𝑟 [𝑉𝑛] = 1. Proof of (2.7) converging uniformly in 𝑆 can be found in [67]. Gen-
eralization of the above discussion to the discrete case should be straightforward.
Let 𝑥 [𝑘] ≜ 𝑥 [𝑘,𝜔], 𝑘 ∈ 1, 2, . . . , 𝑁 , 𝜔 ∈ Ω be a discrete stochastic process. The
covariance function 𝑅(𝑠, 𝑡) is then replaced by the covariance matrix 𝐶 ∈ R𝑁×𝑁
where:

[𝐶]𝑖 𝑗 = E [𝑥 [𝑖]𝑥 [ 𝑗]] (2.9)

then, the KLT basis are eigenvectors of [𝐶]𝑖 𝑗 .

2.3.2 Optimality of Karhunen-Loève Transform

TheKLTattracts attentionmostly due to two following important properties. Firstly,
notice that 𝐶 is symmetric positive-definite, hence 𝐶 admits the spectral decom-
position:

𝐶 = 𝐹Λ𝐹𝑇 (2.10)

where Λ is a diagonal matrix. Then the equivalent KLT in the discrete domain is
given by:

𝑦 = 𝐹𝑥 (2.11)

thus, the covariance of the transform coefficients is:

𝐶𝑜𝑣 [𝑦] = E [(𝑦 − E[𝑦]) (𝑦 − E[𝑦])⊺] = 𝐹𝐶𝐹 ⊺ (2.12)

combined with (2.10), we have:

𝐶𝑜𝑣 [𝑦] = Λ (2.13)

In other words, all the coefficients in the KL domain are independent, thus
any manipulation of one component should not induce any change in the oth-
ers. Another property is that KLT is the optimal transform in many performance
criteria. [68] showed that KLT is the optimal unitary transform for performance
measures of type:

𝜁 (𝐹𝐶𝐹𝐻 ) =
𝑁∑
𝑖=1

𝐺 (𝑢𝑇𝑖 𝐶𝑢∗𝑖 ) (2.14)

where 𝐺 (·) is continuous, increasing and convex and 𝑢𝑖 are eigenvectors of 𝐶, i.e.,
columns of 𝐹 . It was also shown in [68] that distortion rate, basis restriction errors
are performance measure of this kind.
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2.4 RESEARCH GAP IN THE LITERATURE

As a continuation of the discussion in Chapter 1, it is clear that despite the plethora
of existing trajectory models, there remains an imperative need to develop a novel
model. This new model should strike a balance between computational efficiency
and the ability to maintain predictive power over an extended time period. For ex-
ample, while the differential equations inherent in PhysicalModels may be suitable
for brake control under varying weather conditions, they fall short in predicting
the trajectory of nearby vehicles. Similarly, manoeuvre-based models, which in-
corporate additional state variables indicating the driver’s intent, pose considerable
estimation challenges. Gaussian Processes models and deep neural networks, de-
spite their potential, demand extensive computational resources, rendering them
unsuitable for designing a data compression algorithm to be executed on a low-
power V2X modem SoC. Consequently, this dissertation seeks to bridge these
gaps among different models and introduces a new model with broad applicabil-
ity across numerous ADAS and V2X applications, the details of which will be
expounded upon in the forthcoming chapters.

While the literature review presented in this chapter is informative, it certainly
falls short of capturing the myriad background concepts and state-of-the-art de-
velopments related to specific ADAS applications, such as anomalous driving be-
havior detection or V2X data compression. Nonetheless, given the weak interde-
pendence among the chapters, it is our belief that these contents are better suited
for introduction within their corresponding chapters.
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3
Exploring theRandomImpulsesTrajectory
Model for Dimensionality Reduction and
Applications

Abstract
Intelligent Transportation Systems (ITS) hold great potential for improving

the safety, efficiency, and comfort of road users. These applications heavily rely
on processing trajectory data, a significant component of which is the road vehicle
trajectory model. This chapter presents a kinematic statistical model for large-
scale ITS that is more suitable for batch data processing, especially in systems
with limited hardware capabilities such as vehicular communication modems and
embedded systems.

Our proposed model approximates slipping velocity and acceleration as ran-
dom impulses originating from stationary distributions. After validation, we present
two applications of this model.

Our derived Functional Principal Component Analysis (FPCA) basis allows
for effective dimensionality reduction, a key step for various machine learning tasks
such as trajectory prediction and anomaly detection.

Results on the NGSIM 101 dataset demonstrate that highway trajectories can
be significantly reduced to vectors with very small number of dimensions for the
first application. For the second application, the combination of filtering and
smoothing yields a smoothed estimate of velocity with a confidence interval up
to two times smaller than that achieved by filtering alone.

We believe that the proposed models are suitable for implementing stringent-
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constrained data processing at the edges.
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3.1 INTRODUCTION

This chapter presents the “Random Impulses” trajectory model, tailored to meet
the specific requirements of a kinematic statistical model in batch data processing
contexts. At its core, this model perceives individual vehicle trajectories as varia-
tions of a “mean trajectory”. This mean trajectory represents the safety distance-
keeping by drivers, coupled with a slow-varying random component that captures
the influence of various factors considered to be Markovian. This approach sim-
plifies the interactive effects produced by surrounding vehicles, while preserving
the simplicity of the more basic kinematic models that assume constant velocity
or acceleration [37, 69, 70]. The model’s simplicity and computational efficiency
make it particularly attractive for deployment in large-scale ITS, especially those
operating under hardware constraints.

The considerable value of this model becomes more apparent in the subsequent
sections of this chapter, where we demonstrate its applications through various

A version of this chapter, titled “Exploring the Random Impulses Vehicle Trajectory Model for Di-
mensionality Reduction and Motion Extraction from Aerial Videos”, has been submitted for review to
the IEEE Transactions on Intelligent Transportation Systems in 2023. The authors of this submission are
Thinh Hoang, Vincent Martinez, Pierre Maréchal, and Daniel Delahaye.
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Figure 3.1: Overviewof the chapter: we introduce novel signalmodels for road vehicle trajecto-
ries and validate these models through the computation of covariance kernels. The eigenfunc-
tions of these kernels can be used for dimensionality reduction, a process that plays a critical
role in several machine learning tasks. A filtering and smoothing framework based on these
models will be left for a later chapter.
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application frameworks related to the Karhunen-Loève Transform (KLT) - also
known as FPCA - and an approximated linear state-space model. The KLT has
strong ties to Principal Component Analysis (PCA), a technique that has found
widespread use in the machine learning community for data dimension reduction.
The intricate nature of the lateral impulses distribution invites the use of a Gauss-
ian Mixture implementation for the filter and smoother. Achieving these applica-
tions with car-following or constant velocity models would have posed substantial
challenges, which likely contributes to their limited implementation in edge pro-
cessing facilities. This stark contrast underscores the innovative contribution of
the “Random Impulses” model to the field.

Fig. 3.1 provides the overview of the chapter. It unfolds as follows: Section
3.2 introduces the “Random Impulses” Model and Section 3.3 justifies its validity
through the analytical derivation of the covariance kernel. Section 3.4 expounds on
the model’s eigenfunctions for trajectory dimensionality reduction, a crucial com-
ponent for anomaly detection in Advanced Driver Assistance Systems (ADAS).
Section 3.5 that follows will provide various discussions around the assumptions
and the results, and the chapter concludes with Section 3.6.

3.2 RANDOM IMPULSES MODEL

In this section, we formulate the Random Impulses Models for both the longitu-
dinal and lateral components of the vehicle trajectory. The former represents the
“fast-slow” characteristics of speeding, while the latter characterizes lane-changing
behaviors. For reasons that will become apparent, we will refer to these models as
the Random Acceleration Impulses Model (RAIM) and the Random Yawing Im-
pulses Model (RYIM), respectively (Fig. 3.2). Consider the trajectory of vehicle
𝑖, denoted as 𝑊 (𝑖)𝑡 , 𝑌 (𝑖)𝑡 . Here, 𝑊 (𝑖)𝑡 specifies the vehicle’s relative position with
respect to the left roadside, and 𝑌 (𝑖)𝑡 indicates the longitudinal distance the vehicle
has traveled into the segment (Fig. 3.3a). We conceptualize each vehicle’s trajec-
tory as an independent realization of two corresponding random processes, 𝑍𝑡 and
𝑋𝑡 . These processes will be defined in Equations (3.1) and (3.6).

3.2.1 Random Acceleration Impulses Model (RAIM)

Consider a road segment with several lanes, all directing vehicles in the same di-
rection. While vehicles might temporarily stop within the segment due to, for
example, a traffic light, we simplify our model by assuming all vehicles enter and
exit the segment at the same location (Figure 3.3b).

To avoid a collision, the motion of any vehicle entering a road segment is in-
fluenced by nearby cars. Similarly, the movement of these proximate vehicles also
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Figure 3.2: An overview of the RAIM and RYIM Models for longitudinal and lateral compo-
nents of the trajectory time series. The “mean” component represents the self-regulatory ef-
fect of distance-maintaining behavior for safety assurance. The Random Impulses model the
effects of various stochastic factors.
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Figure 3.3: (a) Definition of the 𝑃 -segment coordinate system.𝑊𝑡 , 𝑌𝑡 are relative coordinates,
and absolute coordinates require road topology be taken into account. (b) An example of two
road segments 𝑃1 - the blue rectangle, and 𝑃2 - the green L-shape road segment. Here, both
trajectories 𝑇1 and 𝑇2 are considered valid for the road segment 𝑃1, since vehicles enter and
leave at the same places. However, for road segment 𝑃2 only trajectory 𝑇3 is considered valid
because𝑇4 leaves 𝑃2 prematurely.
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Figure 3.4: All vehicles in the segment (blue) are considered to be following a virtual vehicle
(green). If the car-following is exact, the separation (distance) between each vehicle is main-
tained, which is also the optimal scenario.

impacts the motion of other neighboring cars. This interaction results in a complex
set of interlocking equations describing vehicle relationships without an easy solu-
tion. However, for simplicity, let’s consider all vehicles in a given road segment
as following a “virtual vehicle” in a “leisurely” manner. By “leisurely,” we mean
that the process of following is not exact. Nevertheless, any vehicle whose motion
deviates substantially from the trajectory of the virtual vehicle runs an increased
risk of colliding with other cars, as illustrated in Fig. 3.4. Formally, let {𝑌 (𝑖)𝑡 }

𝑁𝑣
𝑖=1 be

the set of 𝑁𝑣 longitudinal trajectories of vehicles traveling on the road segment 𝑃 ,
𝑌 (𝑖)𝑡 ∈ RR+ . Let 𝑌𝑡 be the trajectory of the virtual vehicle. Statistically, we consider
{𝑌 (𝑖)𝑡 }

𝑁𝑣
𝑖=1 to be independent sample paths of a stochastic process:

{𝑋𝑡 ≜ 𝑋 (𝑡, 𝜔)}, (3.1)

where the sample function is defined as:

𝑋 (·, 𝜔) : R+ → R,

over the probability space (Ω,A, 𝑃) indexed by 𝑡 ∈ R+. TheRAIMmodel assumes:

E [𝑋𝑡 ] = 𝑌𝑡 , (3.2)

and the “residual deviation” of the trajectory is generated from doubly integrating
path-wisely the random acceleration impulses model 𝐴𝑡 :

𝑋𝑡 = E [𝑋𝑡 ] +
∫ 𝑡

𝑠=0

∫ 𝑠

𝜏=0
𝐴𝜏d𝜏d𝑠 . (3.3)

We now describe the process 𝐴𝑡 . For each 𝑘 ∈ {0, 1}, let {𝐼𝑘,𝑖}𝑖, 𝑖 ∈ N∗ be a
sequence of independent random variables (with respect to 𝑖), called renewal inter-
vals associated with the state 𝑘, given by the distribution functions:

𝐹𝑘 (𝑢) = 𝑃 (𝐼𝑘,𝑖 ≤ 𝑢), 𝑘 ∈ {0, 1}, 𝑖 ∈ N∗.
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Figure 3.5: One sample path of L𝑡 with renewal intervals 𝐼0,𝑘 given by Γ(𝛼 = 5, 𝛽 = 0.5) and
𝐼1,𝑘 given by Γ(𝛼 = 30, 𝛽 = 0.5). L𝑡 = 1marks the period where there is acceleration activity,
andL𝑡 = 0 otherwise. There are 11 regeneration points in this exemplary sample path located
at 𝑡 ∈ {3, 22, 24, 46, 48, 72, 75, 85, 88, 100, 105}.

Equipped with two sequences of renewal intervals corresponding to state 𝑘 = 0
and 𝑘 = 1, we define a sequence of regeneration points corresponding to moments
where there is a jump from state 0 to state 1 and vice-versa:

𝑊𝐼 = {𝜔𝑖}, 𝑖 ∈ N∗,

such that:

𝜔𝑖 =

{
𝜔𝑖−1 + 𝐼1, 𝑖+12 if 𝑖 is odd,
𝜔𝑖−1 + 𝐼0, 𝑖2 if 𝑖 is even.

This allows us to formally define a Markov renewal process L𝑡 , which is the accel-
eration activity process as follows:

L𝑡 =
+∞∑
𝑖=1

(
111𝜔𝑖≤𝑡≤𝜔𝑖+1 × 𝛿{𝑖≡0[2]}

)
, (3.4)

where 𝑖 ≡ 0[2] indicates an even value of 𝑖.
Informally, the acceleration activity process is composed of alternating peri-

ods of idleness and acceleration. The lengths of these periods are determined by
the renewal intervals of 𝐼0,· and 𝐼1,· respectively (Fig. 3.5). The RAIM represents
this physical reality, suggesting that drivers following a virtual vehicle but inter-
mittently apply and release the gas or brake pedals over random periods of time,
at random times. This process results in the vehicle’s motion deviating from that
of the virtual vehicle.

Building upon (3.4), the RAIM model further assumes that acceleration im-
pulses areidentically independent samples from a stationary distribution function
𝐹𝑎 (𝑢), resulting in the acceleration impulses model 𝐴𝑡 :

𝐴𝑡 =
+∞∑
𝑖=1

(
𝑀𝑖 × 111𝜔𝑖≤𝑡≤𝜔𝑖+1 × 𝛿{𝑖≡0[2]

}
), 𝑀𝑖 ∼ 𝐹𝑎 (𝑢) (3.5)

A path sample is shown in Fig. 3.6. It is also worth mentioning that the RAIM
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Figure 3.6: One sample path of𝐴𝑡 with renewal intervals 𝐼0,𝑘 given by Γ(𝛼 = 5, 𝛽 = 0.5), 𝐼1,𝑘
given by Γ(𝛼 = 30, 𝛽 = 0.5) and𝑋𝑘 ∼ N(0, 0.052).

model is a particular case of the more general Piecewise Markov Process and the
Markov Renewal Process. Other interesting properties, including expended and
remaining times in a segment, can be further found in [71].

3.2.2 Random Yawing Impulses Model (RYIM)

We now shift our focus onto the lateral component of the trajectory. As before, we
assume that the set of lateral trajectories {𝑊 (𝑖)𝑡 }

𝑁𝑣
𝑖=1 are independent path samples

of a stochastic process 𝑍𝑡 . The RYIM model assumes:

𝑍𝑡 = E [𝑍𝑡 ] +
∫ 𝑠=𝑡

𝑠=0
𝐵𝑠d𝑠 . (3.6)

Introduce the coordinate system as depicted in Fig. 3.7(a), where𝑂𝑦 is aligned
with the centre marking. With a small yawing angle 𝜃 , it follows that 𝑣𝑥 ≈ 𝑣𝜃 and
𝑣𝑦 ≈ 𝑣 . The dynamics of 𝜃 can be attributed to the driver’s steering wheel input,
and this gives a physical interpretation to the RYIM model. As a vehicle navigates
a road, small adjustments to the steering wheel by the driver keep the vehicle in
its lane, leading to 𝜃 oscillating around zero. Occasionally, a significant shift in 𝜃
might be observed when the driver decides to change lanes.

In comparison with the RAIM model, there are still 2 states {0, 1} which cor-
respond to lane-keeping and lane-changing respectively. The only difference is
that 𝑍𝑡 only has one integration of the random impulses process rather than two,
as shown in (3.3).

As above, the “slipping activity process” S𝑡 is defined as:

S𝑡 =
+∞∑
𝑖=1

(
111𝜔𝑖≤𝑡≤𝜔𝑖+1 × 𝛿{𝑖≡0[2]}

)
. (3.7)

The slipping impulse model is then defined as

𝐵𝑡 =
+∞∑
𝑖=1

𝑅𝑖 × 111𝜔𝑖≤𝑡≤𝜔𝑖+1 × 𝛿{𝑖≡0[2]} in which 𝑅𝑖 ∼ 𝐹𝑙𝑐 (𝑢). (3.8)
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Figure 3.7: (a) Illustration of the yawing angle 𝜃 , the lateral velocity 𝑣𝑥 and the longitudinal
velocity 𝑣𝑦 . (b) Probability density of the Slipping Velocity Distribution with three modes in-
dicating changing to the left lane, lane keeping and changing to the right lane.
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Figure 3.8: The slipping impulses generated by the process 𝐵𝑡 defined in (3.8) with renewal
intervals 𝐼0,𝑘 given by Γ(𝛼 = 30, 𝛽 = 0.25), 𝐼1,𝑘 given by Γ(𝛼 = 150, 𝛽 = 0.25) and 𝑅𝑖 ∼
N(0, 0.52).

The distribution 𝐹𝑙𝑐 dictates the behavior of drivers in terms of lane-keeping and
lane-changing, while the distributions 𝐼·,𝑘 manage the frequency and reaction rates
of drivers. The sample paths of the slipping activity process, denoted as S𝑡 , are
shown in Fig. 3.5, and of 𝐵𝑡 are presented in Fig. 3.8, with its corresponding 𝐹𝑙𝑐
showcased in Fig. 3.7(b).

3.3 VALIDATION OF THE MODEL THROUGH COMPUTATION OF THE COVARI-
ANCE KERNEL AND ITS EIGENFUNCTIONS

The RAIM and RYIM models operate on the assumption that the residual compo-
nents of the trajectory time series, once the mean trajectories have been subtracted,
originate from a Markov process. However, the validity of such assumptions still
needs verification. To address this, we analytically derive the covariance kernel of
the processes 𝑋𝑡 , 𝑍𝑡 and the corresponding eigenfunctions. The stationary process
assumption could be deemed valid if the convergence of the covariance function
can be established via the law of large numbers.
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3.3.1 RYIM Model’s Covariance Kernel and Eigenfunctions

We study the time integration of 𝐵𝑡 in Eq. (3.8). Analysis for the acceleration
process (3.5) should be similar.

𝐵𝑡 =
+∞∑
𝑖=1

𝑅𝑖 × 111𝜔𝑖≤𝑡≤𝜔𝑖+1 × 𝛿{𝑖≡0[2]} . (3.9)

Proposition 3.1. The covariance kernel for the process𝑍𝑡 defined in (3.6) converges
to the covariance kernel for the Wiener process if the regeneration time 𝐼0+ 𝐼1 goes
to zero.

Proof. The RYIM model assumes:

𝑍𝑡= E[𝑍𝑡 ] +
∫ 𝑡

0
𝐵𝑠d𝑠

=



E[𝑍𝑡 ] +
∑

1≤𝑘≤ 𝑖
2

𝑀𝑘𝐼1,𝑘 if 𝜔𝑖 ≤ 𝑡 ≤ 𝜔𝑖+1 and

𝑖 is even;

E[𝑍𝑡 ] +
∑

1≤𝑘≤ 𝑖−1
2

𝑀𝑘𝐼1,𝑘 +𝑀 𝑖+1
2
(𝑡 − 𝜔𝑖) if

𝜔𝑖 ≤ 𝑡 ≤ 𝜔𝑖+1 and 𝑖 is odd.

We define 𝑍𝑡 , 𝑍𝑡 as the almost sure upper and lower bounds of 𝑍𝑡 respectively:

𝑍𝑡 ≤ 𝑍𝑡 ≤ 𝑍𝑡 almost surely.

where
𝑍𝑡 = E[𝑍𝑡 ] +

∑
1≤𝑘≤b 𝑖2 c

𝑀𝑘𝐼1,𝑘 if 𝜔𝑖 ≤ 𝑡 ≤ 𝜔𝑖+1,

and
𝑍𝑡 = E[𝑍𝑡 ] +

∑
1≤𝑘≤b 𝑖+12 c

𝑀𝑘𝐼1,𝑘 if 𝜔𝑖 ≤ 𝑡 ≤ 𝜔𝑖+1.

We define 𝐹𝜋 (𝑢) as the product distribution of 𝐹𝑙𝑐 (𝑢) and 𝐹𝑘 (𝑢). Obviously 𝐹𝜋 (𝑢)
is stationary if the component distributions are stationary. Let 𝑄𝑘 = 𝑀𝑘𝐼1,𝑘 then
𝑄𝑘 ∼ 𝐹𝜋 (𝑢). The lower bound process could be rewritten into a more suggestive
form:

𝑍𝑡 = E[𝑍𝑡 ] +
∑

1≤𝑘≤𝜁𝑡
𝑄𝑘 , (3.10)
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where 𝜁𝑡 is the the number of regenerations before 𝑡 of the process 𝐼0 + 𝐼1 ≜ {𝐼1,𝑘 +
𝐼0,𝑘}𝑘 . In other words, the process bounds are essentially renewal-reward processes,
whose reward function is 𝑄𝑘 , and the holding times 𝐼1,𝑘 + 𝐼0,𝑘 indicate the time
between two consecutive renewals into state 1. Let 𝜌𝑘 ≜ 𝜔2𝑘+1, then {𝜌1, 𝜌2, . . . }
are the times when 𝐼0 + 𝐼1 regenerates. From the Key Renewal Theorem

E[𝜁𝜏+ℎ] − E[𝜁𝜏 ] →
ℎ

𝜇
as 𝜏 → +∞, (3.11)

where
𝜇 = E[𝐼0] + E[𝐼1] .

Equation (3.11) implicitly assumes that the process has been running long enough.
We also assume that the longer the run time is, the more renewals into state 1 there
will be, with probability one:

𝜁𝑡 < 𝜁𝑠 ⇒ 𝑡 < 𝑠 a.s. (3.12)

Let 𝑡 = 𝜏 + 𝑡 ′, 𝑠 = 𝜏 + 𝑠′, we can calculate the covariance function of 𝑍𝑡 :

Cov(𝑡, 𝑠) = E[(𝑍𝑡 − E[𝑍𝑡 ]) (𝑍𝑠 − E[𝑍𝑠])]
= E[E[(𝑍𝑡 − E[𝑍𝑡 ]) (𝑍𝑠 − E[𝑍𝑠])] |𝜁𝑡 , 𝜁𝑠]

= E


∑

1≤𝑖≤𝜁𝑡

∑
1≤ 𝑗≤𝜁𝑠

E[(𝑄𝑖 − E[𝑄𝑖]) (𝑄 𝑗 − E[𝑄 𝑗 ])]


= E [min(𝜁𝑡 , 𝜁𝑠) Var[𝑄𝑖]]
= E [min(𝜁𝜏+𝑡 ′, 𝜁𝜏+𝑠 ′) Var[𝑄𝑖]]

→ 1
𝜇
min(𝜌𝜁𝑡 , 𝜌𝜁𝑠 ) Var[𝑄𝑖] (3.13)

where we have used the law of total probability to go from the second line to the
third line, independence of 𝑄𝑖 to go from the third line to the fourth, and (3.11)
to go to the final line if 𝑡 < 𝑠 implies 𝜁𝑡 < 𝜁𝑠 (3.12).

By definition, 𝜌𝜁𝑡 ′ = 𝑡 ′, Cov(𝑡, 𝑠) = (1/𝜇)min(𝑡, 𝑠) Var[𝑄𝑖]. Similarly for 𝑍𝑡 :

Cov (𝑡, 𝑠) = E[(𝑍𝑡 − E[𝑍𝑡 ]) (𝑍𝑠 − E[𝑍𝑠]
= E[E[(𝑍𝑡 − E[𝑍𝑡 ]) (𝑍𝑠 − E[𝑍𝑠])] |𝜁𝑡 , 𝜁𝑠]

= E


∑

1≤𝑖≤𝜁𝑡+1

∑
1≤ 𝑗≤𝜁𝑠+1

E[(𝑄𝑖 − E[𝑄𝑖]) (𝑄 𝑗 − E[𝑄 𝑗 ])]


= E [min(𝜁𝑡 + 1, 𝜁𝑠 + 1) Var[𝑄𝑖]]
= E [min(𝜁𝜏+𝑡 ′ + 1, 𝜁𝜏+𝑠 ′ + 1) Var[𝑄𝑖]]

→ 1
𝜇
min(𝜌𝜁𝑡+𝜇, 𝜌𝜁𝑠+𝜇) Var[𝑄𝑖] (3.14)
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Figure 3.9: (a) depicts one instance of 𝜇min(𝜁𝑡 , 𝜁𝑠) Var[𝑄𝑖] |𝜁𝑡 , 𝜁𝑠 , with 𝑠 fixed, as the blue
graph. The black dots are regeneration points. The expectation over all 𝜁𝑡 , 𝜁𝑠 , when 𝜏 → +∞
gives the covariance function shown on (b). The lower bound of the process coincides with
min(𝑠, 𝑡), while the upper bound coincides withmin(𝑠 + 𝜇, 𝑡 + 𝜇). Note the relative position
of the regeneration points with respect to the two boundsmin(𝑠, 𝑡) andmin(𝑠 + 𝜇, 𝑡 + 𝜇).

and we also have Cov (𝑡, 𝑠) = (1/𝜇)min(𝑡 + 𝜇, 𝑠 + 𝜇) Var[𝑄𝑖]. Figure 3.9 shows
the covariance functions’ upper and lower bounds. Obviously, if 𝐼0 + 𝐼1 regenerates
fast enough, 𝜇 → 0 and we can approximate:

Cov[(𝑡, 𝑠)] ≈ 1
𝜇
min(𝑡, 𝑠) Var[𝑄𝑖] . (3.15)

□
Because the covariance kernel’s eigenfunctions are also the KL basis [72], we

will use the terms interchangeably.

Corollary 3.2. The KL decomposition for𝑍𝑡 is also the same as the Wiener process
and is given by:

𝑍𝑡 = E[𝑍𝑡 ] +
+∞∑
𝑘=1

𝛽𝑘
√
2 sin

((
𝑘 − 1

2

)
𝜋𝑡

)
. (3.16)

where 𝛽𝑘 are normally distributed Gaussian random variables.

Proof. See [73]. □
The validity of the model is confirmed by Fig. 3.10. The similar structure

of the covariance kernel attests to the assumptions proposed in Proposition 3.1,
which implies that the process may be considered Markovian with impulses be-
ing independent and identically distributed samples from a stationary distribution.
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Figure 3.10: (a) Computed covariance kernel from the NGSIM dataset (b) Predicted covari-
ance kernel from the RYIM model.

The eigenfunctions shown in Fig. 3.12, exhibiting a harmonic shape, also lend
weight to this finding. However, the wobbly patterns indicate that the conditions
for convergence are not ideal. This is also illustrated in Fig. 3.11, which displays
covariance kernels associated with larger idle times between regenerations. If the
regeneration times are large, the kernels will appear more “pixelated”.

3.3.2 RAIM Model’s Covariance Kernel and Eigenfunctions

The derivation of the covariance kernel and eigenfunctions of RAIM is more in-
volved.

Proposition 3.3. Under the assumptions made in Proposition 3.1, the covariance
kernel eigenfunctions are given by:

𝜙 (𝑡) =
+∞∑
𝑘=1

𝑐𝑘
𝜋2(𝑖 − 1/2)2𝑒𝑘 (𝑡).

and the covariance kernel can be computed from:

𝑅(𝑠, 𝑡) = E[(𝑋𝑡 − E[𝑋𝑡 ]) (𝑋𝑠 − E[𝑋𝑠])]

=
+∞∑
𝑘=1

+∞∑
𝑙=1

E[𝛽𝑘𝛽𝑙 ]
(𝑘 − 1/2)2𝜋2𝑒𝑘 (𝑡)𝑒𝑙 (𝑠) .
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Figure 3.11: Prediction of covariance kernel by RYIM model with different idle time distribu-
tions: (a) Γ(𝛼 = 75, 𝛽 = 0.05), (b) Γ(𝛼 = 175, 𝛽 = 0.25).
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Figure 3.12: (a) KL basis obtained by numerically eigendecomposing the empirical covariance
kernel (b) KL basis predicted by the RYIMmodel. Functions that are inverted vertically are the
same since the corresponding coefficients can be replaced with an opposite sign.
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Proof. Consider the RAIM given by Eq. (3.3):

𝑋𝑡 = E [𝑋𝑡 ] +
∫ 𝑡

𝑠=0

∫ 𝑠

𝑢=0
(𝐴𝑢d𝑢) d𝑠 . (3.17)

Restricting to 𝑡 ∈ [0, 1], and since 𝐴𝑡 and 𝐵𝑡 are similar, we can reuse Equation
(3.16):

𝑋𝑡 = E [𝑋𝑡 ] +
∫ 1

0

(
𝑍0 +

+∞∑
𝑘=1

𝛽𝑘
√
2 sin

((
𝑘 − 1

2

)
𝜋𝑡

))
d𝑡 . (3.18)

Without any loss of generality, we can assume 𝑍0 = 0. A direct integration gives:

𝑋𝑡 = E [𝑋𝑡 ] +
+∞∑
𝑘=1

−𝛽𝑘
𝑘 − 1

2𝜋

√
2

(
cos

((
𝑘 − 1

2

)
𝜋𝑡

)
− 1

)
. (3.19)

While (3.19) is a series expansion of 𝑋𝑡 , it is far from being the eigenfunctions (or
the KLT). This is clear from the fact that {cos ((𝑘 − 1/2) 𝜋𝑡) − 1}𝑘 do not even
form an orthogonal basis. To avoid cluttering of notations, we denote:

𝑒𝑘 (𝑡) =
√
2

(
cos

((
𝑘 − 1

2

)
𝜋𝑡

)
− 1

)
.

Then, (3.19) can be rewritten as:

𝑋𝑡 = E [𝑋𝑡 ] +
+∞∑
𝑘=1

−𝛽𝑘
𝑘 − 1

2𝜋
𝑒𝑘 (𝑡) .

The covariance function can be calculated directly as:

𝑅(𝑠, 𝑡) = E[(𝑋𝑡 − E[𝑋𝑡 ])(𝑋𝑠 − E[𝑋𝑠])] (3.20)

=
+∞∑
𝑘=1

+∞∑
𝑙=1

E[𝛽𝑘𝛽𝑙 ]
(𝑘 − 1/2)2𝜋2𝑒𝑘 (𝑡)𝑒𝑙 (𝑠), (3.21)

and independence of 𝛽𝑘 leads to:

𝑅(𝑠, 𝑡) =
+∞∑
𝑘=1

E[𝛽2
𝑘
]

(𝑘 − 1/2)2𝜋2𝑒𝑘 (𝑡)𝑒𝑘 (𝑠).

Using (3.16), we can further simplify the equation to:

𝑅(𝑠, 𝑡) =
+∞∑
𝑘=1

1
(𝑘 − 1/2)4𝜋4𝑒𝑘 (𝑡)𝑒𝑘 (𝑠). (3.22)
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The KL basis is solution to the Fredholm equation:∫ 1

𝑡=0
𝑅(𝑠, 𝑡)𝜙 (𝑡)d𝑡 = 𝜆𝜙 (𝑠), (3.23)

which is a special case of the Fredholm integral equation of the second kind with
separable kernel. In general, there are infinitely many solutions corresponding to
the zero eigenvalue of the integral operator of kernel 𝑅(𝑠, 𝑡). But it is of our interest
to find solutions with the largest positive eigenvalues which are written under the
form:

𝜙 (𝑡) =
+∞∑
𝑘=1

𝑐𝑘
𝜋2(𝑘 − 1/2)2𝑒𝑘 (𝑡). (3.24)

Substitution into (3.23) gives:

𝜆𝜙 (𝑠) =
∫ 1

𝑡=0

( +∞∑
𝑘=1

1
(𝑘 − 1/2)4𝜋4𝑒𝑘 (𝑠)𝑒𝑘 (𝑡)

)
( +∞∑
𝑗=1

𝑐 𝑗

𝜋2( 𝑗 − 1/2)2𝑒 𝑗 (𝑡)
)
d𝑡

=
+∞∑
𝑘=1

+∞∑
𝑗=1

𝑒𝑘 (𝑠)
(𝑘 − 1/2)2𝜋2𝑐 𝑗

∫
𝑒𝑘 (𝑠)

(𝑘 − 1/2)2𝜋2

𝑒 𝑗 (𝑠)
( 𝑗 − 1/2)2𝜋2d𝑡 .

Let:

𝐴𝑘 𝑗 =
∫

𝑒𝑘 (𝑠)
(𝑘 − 1/2)2𝜋2

𝑒 𝑗 (𝑠)
( 𝑗 − 1/2)2𝜋2d𝑠

≜
𝑒𝑘 (𝑠)

(𝑘 − 1/2)2𝜋2

𝑒 𝑗 (𝑠)
( 𝑗 − 1/2)2𝜋2 .

Then:

𝜆
+∞∑
𝑘=1

𝑐𝑘
𝜋2(𝑘 − 1/2)2𝑒𝑘 (𝑡) =

+∞∑
𝑘=1

+∞∑
𝑗=1

𝐴𝑘 𝑗
𝑒𝑘 (𝑠)

(𝑘 − 1/2)2𝜋2𝑐 𝑗 . (3.25)

Because 𝑒𝑘 (𝑡) ≠ 0, we can match the coefficients of 𝑒𝑘 (𝑡):

𝐴𝑐 = 𝜆𝑐, (3.26)

where 𝐴 = [𝐴𝑘 𝑗 ], 𝑐 = [𝑐1, 𝑐2, . . . ]>. Hence, an eigendecomposition of 𝐴 should
reveal the eigenvectors of coefficients 𝑐 and the KLT basis is given by (3.24). The
coefficients of the first 3 KL basis functions are given in Table 3.1. □
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Table 3.1: 7 first coefficients of the first 3 KL basis to be used in Equation (3.24).

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7
𝜙1 -9.99e-01 -3.21e-02 -1.78e-03 -8.45e-04 -2.05e-04 -1.28e-04 -5.03e-05
𝜙2 -9.42e-01 3.30e-01 5.48e-02 4.71e-03 3.85e-03 9.49e-04 8.11e-04
𝜙3 -0.72 0.55 -0.39 -0.10 -0.01 -0.01 0
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Figure 3.13: The covariance kernels from (a) RAIM and (b) NGSIM dataset.
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Figure 3.14: (a) KL basis obtained from RAIM (b) KL basis obtained numerically from NGSIM
dataset. Note that some components in (a) and (b) were inverted, but they are the same since
we can invert the sign of the corresponding score component.
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FPCA

TIME DOMAIN FPCA DOMAIN

Figure 3.15: In thedecompositionof trajectories using FPCA, eachoriginal time series is treated
as a functional—equivalent to a R150 vector in the discrete domain—as depicted by a curve
in the left graph. Each of these curves is subsequently transformed into a 2D point, which can
be thought of as equivalent to a R2 vector. The horizontal axis is 𝛽1, and the vertical axis is 𝛽2.

The striking similarity between the covariance kernels predicted by RAIM and
those numerically computed from the datasets is readily observable (Fig. 3.13).
Their eigenfunctions also display a strong similarity (Fig. 3.14). These observations
provide robust support for the assumptions presented in Proposition 3.1, but to a
significantly greater degree than the lateral component.

3.4 FUNCTIONAL PCA (FPCA) APPLICATIONS

Dimensionality reduction, a cornerstone of machine learning, promises innova-
tive solutions in predictive modeling, anomaly detection, and classification tasks.
Among these methods, PCA stands out. Extensively utilized in fields like biology
and engineering, PCA effectively mitigates the curse of dimensionality, enhancing
the performance of inference methods in low-dimensional space.

It turns out that the eigenfunctions introduced in Eq. (3.16) and (3.24) are
also the basis functions required to perform dimensionality reduction (Fig. 3.15)
[16, 74]. In particular, let 𝑓 (𝑡) be the time series that is either the longitudinal or
lateral component of the trajectory, and 𝑒𝑘 (𝑡) representing the 𝑘-th eigenfunction
denoted in (3.16). Then:

𝛽𝑘 =
∫
𝑡
𝑒𝑘 (𝑡) 𝑓 (𝑡)d𝑡 (3.27)

Then, given some 𝑁 ∈ N∗, 𝑓 (𝑡) ∈ R∞ can be approximated by a truncated series:

𝑓 (𝑡) ≈ 𝑓𝑁 (𝑡) ≜
𝑁∑
𝑘=1

𝛽𝑘𝑒𝑘 (𝑡), (3.28)

in other words, 𝑓 (𝑡) can now be represented by a vector 𝛽 = [𝛽1, . . . , 𝛽𝑁 ] with a
finite dimension of 𝑁 .
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We illustrate multiple applications of this dimensionality reduction method,
encompassing data compression, identifying anomalies, and completing trajecto-
ries, providing comparisons whenever feasible.

3.4.1 Dimensionality Reduction

Definition 3.4 (N-terms basis restriction error and Normalized mean Squared Error).
Let the N-terms approximated functional of 𝑓 (𝑡) be given by (3.28), we define the
N-terms basis restriction error as:

𝜖𝑁 =
∫ +∞

𝑡=−∞

(
𝑓 (𝑡) − 𝑓𝑁 (𝑡)

)2
d𝑡, (3.29)

and the related normalized mean squared error:

𝜖𝑁 =
𝜖𝑁∫ +∞

−∞ 𝑓 (𝑡)2d𝑡
(3.30)

Then, it has been shown in [75] that the FPCA decomposition whose score
coefficients given by (3.27) minimize the N-terms basis restriction error.

Typically, in the traditional FPCA workflow, the basis functions must be com-
puted from a sample set, referred to as the learning dataset, and then applied to
carry out the decomposition. However, according to Proposition 3.1, these basis
functions remain invariant provided the prescribed assumptions are maintained.

To demonstrate the approximation power, we compare the normalized mean
squared error when performing the decomposition using the analytical basis func-
tions (KLT transform) provided by (3.16) and (3.24), the basis functions computed
numerically from the learning set, and other harmonic linear transforms such as
Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT). We
also include the Cubic Splines Basis for reference due to its popularity, even though
B-spline Transform is not typically considered as a linear transform.

The remarkable efficacy of the RAIM and RYIM models is clearly demon-
strated in Fig. 3.16, where they exhibit the quickest error convergence for the
longitudinal component of the trajectories. Moreover, they rank second for the
speediest convergence on the lateral component.

Tables 3.2 and 3.3 present a more detailed comparison of the performance of
the KLT, as predicted by the RAIM and RYIM models, against other harmonic
transforms. This includes the numerical KLT, DFT, and DCT. It is clear that
RAIM not only delivers better performance in terms of approximation error, but
also exhibits consistency across all trajectories. This consistency is reflected in the
smaller standard deviations for all values, including the number of components,
as well as the maximum and minimum squared error. For RYIM model, DFT is
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Figure 3.16: Average N-terms basis restriction error of longitudinal component (a) and lateral
component (b). RAIM and RYIM symbolize the predicted basis functions from the RAIM and
RYIM models respectively.

quicker to converge and also more consistent than RYIM’s eigenfunctions. This is
thought to be attributed to the non-compliance of the ideal convergence criteria
of Proposition 3.1.

It’s noteworthy to mention that this error convergence rate was even faster than
when using the empirical basis numerically computed from the covariance kernel.
This phenomenon can be linked to the inherent numerical errors and variances
resulting from working with a sampled training set. However, it’s anticipated that
this discrepancy will diminish as more data is incorporated into the training set.

Figures 3.17 and 3.18 demonstrate the approximation of trajectories using only
nine FPCA scores. It is immediately obvious that FPCA is comparable to the

Table 3.2: Approximation power of various harmonic transforms for longitudinal component
of vehicle trajectories. Values for AVG, STD, MAX, MIN are in normalized square error. Abbre-
viations: 𝑁 : number of components, D. KLT: direct KLT.

AVG STD MAX MIN
N 3 6 9 3 6 9 3 6 9 3 6 9
RAIM 0.05 0.00 0.00 0.10 0.00 0.00 0.55 0.01 0.00 0.00 0.00 0.00
D. KLT 0.17 0.05 0.02 0.15 0.03 0.02 0.60 0.14 0.08 0.00 0.00 0.00
DFT 0.07 0.03 0.02 0.05 0.02 0.01 0.18 0.08 0.05 0.00 0.00 0.00
DCT 0.14 0.01 0.00 0.19 0.01 0.00 0.82 0.07 0.01 0.00 0.00 0.00
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Table 3.3: Approximation power of various harmonic transforms for lateral component of
vehicle trajectories. Values for AVG, STD, MAX, MIN are in normalized square error. Abbrevi-
ations: 𝑁 : number of components, D. KLT: direct KLT.

AVG STD MAX MIN
N 3 6 9 3 6 9 3 6 9 3 6 9
RYIM 0.15 0.06 0.04 0.17 0.08 0.07 0.80 0.54 0.50 0.02 0.01 0.00
D. KLT 0.20 0.10 0.06 0.19 0.10 0.07 0.85 0.63 0.38 0.03 0.03 0.01
DFT 0.09 0.04 0.02 0.10 0.05 0.03 0.61 0.26 0.18 0.02 0.01 0.00
DCT 0.23 0.07 0.05 0.17 0.09 0.07 1.00 0.63 0.53 0.03 0.01 0.00
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Figure 3.17: Approximationwith 9 components of the longitudinal component of two sample
trajectories. The mean component was subtracted for better visualization.

role of DFT and DCT in image processing where the truncated basis similarly
reveals a denoising ability. There’s a direct relationship between the number of
components used in the transformation and the smoothness of the trajectory -
fewer components result in smoother trajectories.

3.4.2 Data Compression

Drawing parallels with renowned digital data formats such as MP3 and JPEG, the
KLT carries strong potential akin to the DCT for data compression. This potential
is particularly important in the context of vehicular network. For instance, instead
of transmitting vehicle coordinates for each of the 150 time steps, it becomes fea-
sible to transmit only 2-3 FPCA score coefficients, resulting in a far more efficient
scheme. Details can further be found in our previous work [76], where we suc-
cessfully demonstrated the implementation of such transform in devising a data
compression strategy for the Cooperative Awareness Message (CAM) transmis-
sion within the V2X network setting.
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Figure 3.18: Approximation with 9 components of the lateral component of two sample tra-
jectories.

The earlier implementation, however, has some by practical challenges. Specif-
ically, it required continuous collection of trajectories in the learning set and recur-
rent computation of the basis functions. This chapter addresses these challenges
and offers a significant improvement: we demonstrate that a single, unique ba-
sis set can be used, which simplifies the process considerably. This development
makes the approach more amenable for hard coding on embedded platforms.

3.4.3 Trajectory Prediction and Completion

FPCA simplifies the dataset by reducing its dimensions, thereby facilitating a more
intuitive and straightforward inference process. To this, we propose a Bayesian in-
ference framework as an example. This framework is designed to “fill in the blanks”
of the unobserved part of the longitudinal trajectory, using partial observations ob-
tained up to a specific timestep.

Formally, let 𝑦1:𝑛 be the set of 𝑛 noisy observations identically and indepen-
dently obtained from a vehicle’s trajectory whose measurement model is 𝑦 = 𝑦 +𝜖𝑦
where 𝜖𝑦 ∼ N(0, 𝜎2𝑦 ) and D = {𝑦𝑖1:𝑞 ; 1 ≤ 𝑖 ≤ 𝑚} be the training set of 𝑚 trajec-
tories whose length is 𝑞 > 𝑛. We would like to find the best estimate for 𝑦𝑛+1:𝑞.
Furthermore, let 𝑎 ∈ R𝑁 be the corresponding FPCA score vector of the trajectory
𝑦1:𝑞 computed from (3.27).

The general idea is to fit a distribution (presumably Gaussian in this example)
on the FPCA score vectors corresponding to the trajectories of D, giving us the
prior distribution 𝑝 (𝑎) = N(0, Σ𝑎). Then, we compute the posterior (Fig. 3.19).

𝑝 (𝑎 |𝑦1:𝑛) =
𝑝 (𝑦1:𝑛 |𝑎)𝑝 (𝑎)

𝑝 (𝑦1:𝑛)
∝𝑎

𝑛∏
𝑖=1

𝑝 (𝑦𝑖 |𝑎)𝑝 (𝑎) (3.31)
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In the context that all distributions are Gaussians, the maximum-a-posteriori co-
incides with the minimum mean square (MMSE) estimate of 𝑎, is obtained from
Algorithm 3.1 Figure 3.20 provides an example of the completion of the trajec-

Algorithm 3.1: Trajectory Representation Estimation

1: 𝜙 ← [𝑒𝑘 [0], 1 ≤ 𝑘 ≤ 𝑞]
2: 𝜇′← 0𝑞 ≜ [0, 0, . . . , 0] (𝑞 zeroes)
3: Σ′← Σ𝑎
4: for 𝑖 = 1 to 𝑛 do
5: Σ′← (Σ−1𝑎 + 1/𝜎2𝑦 (𝜙𝑖 ⊗ 𝜙𝑖))−1
6: 𝜇′← 𝜇′ + 1/𝜎2𝑦 (𝑦𝑖 − 𝜇𝑖)𝜙>𝑖
7: 𝑎∗ ← Σ′𝜇′

8: end for

POSTERIOR 
DISTRIBUTION

PRIOR
DISTRIBUTION

Figure 3.19: Illustration of the estimation process: the observations provide information to
“narrow down” the distribution of the value of 𝑎 in the FPCA domain, which explains themore
“pointy” look of the posterior distribution.

tory’s longitudinal component. Remarkably, Fig. 3.21 reveals that the prediction
error remains within acceptable bounds (with error tolerance 𝜖=5ft) for as many
as 90 timesteps, equivalent to 9 seconds. This is in contrast to the average of only
20 timesteps predicted by the Constant Velocity model. It’s also noteworthy that
our FPCA-based method begins to exhibit divergence in error from timestep 100
onwards. We attribute this divergence to the finiteness of the time series, a phe-
nomenon similar to performing a Fourier Transform on a windowed signal.
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Figure 3.20: The trajectory completion is illustrated for observations up to timestep 30. The
upper graph presents the completed trajectory, while the lower one displays the error between
the actual and predicted trajectories.
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Figure 3.21: A comparison was conducted between our Random Impulses FPCA estimate
and the Constant Velocity models. This included the mean and standard deviation of the
prediction error (a), and a histogram of the prediction horizon (b) for 100 test trajectories
sampled from the NGSIM dataset. The prediction error tolerance was set at 𝜖=5ft, and 30
timesteps of observations were made available for prediction.
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Figure 3.22: (a) The speeding vehicle’s longitudinal component (b) The corresponding FPCA
scores. KNN could easily single out the FPCA representation of this speeding vehicle from the
rest.

3.4.4 Anomaly Detection

Anomaly detection tasks are also straightforward as algorithms such as K-nearest-
neighbor (KNN) and clustering can be effectively performed on this domain (Fig.
3.22). While this concept has been partially explored in previous studies like
[30, 77], the utilization of the same basis functions for different traffic scenarios
to decompose trajectories is a novel finding. This feature, akin to data compres-
sion applications, allows us to bypass the learning process, favoring a hard-coded
transformation, making these results more impactful.

3.5 DISCUSSION

The validation of the Random Impulses Model demonstrates that the Markov-
ian assumption regarding random acceleration and yawing impulses is reasonable,
although the assumption is more valid for the longitudinal component than the
lateral. The models further reveal that the discrepancy originates from the less
frequent regeneration of yawing impulses compared to acceleration impulses.

The models also offer a more intuitive approximation of the underlying phys-
ical processes. Rather than modeling the driver’s reactions as functions of various
external factors, they represent cumulative distance-keeping behavior using a sin-
gle component, namely the mean trajectory. The residual component reflects the
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variations in inputs, leading to a significantly simpler model. However, despite
this simplicity, the model still maintains the powerful characteristics seen in car-
following models, such as a long prediction horizon.

With the validation of these models and the availability of covariance kernels,
the applications of FPCA can be extended. Conventionally, FPCA requires the
derivation of basis functions from a training set, raising the question of the ro-
bustness of these functions in relation to time and traffic conditions. This chapter
introduced a novel finding from Proposition 3.1, asserting that the basis functions
remain invariant under mild conditions of impulse regeneration time and ampli-
tude samples from a stationary distribution. These assumptions appear valid for
highway scenarios, and we speculate that they likely hold for most traffic scenarios,
provided conditions do not rapidly change, such as with the sudden presence of
reckless vehicles.

The implications of these findings are significant; the learning phase can be en-
tirely bypassed, and the same basis functions can be hard-coded into signal proces-
sors. This can lead to considerable memory and cost savings for vehicular and ITS
applications.

Further refinement of the models is necessary if multiple modes of traffic are
available. Thirdly, akin to the Fourier Transform, it is crucial to account for the
window effect on the time domain signal transform. This helps to prevent the
divergence of error towards the end of the signal.

3.6 CONCLUSION

In conclusion, this chapter introduced a kinematic statistical model for road vehi-
cle trajectory and investigated its potential in various applications. These include
FPCA, as well as the approximated forms for probabilistic filtering and smoothing
of trajectories derived from aerial video extraction.

The model’s assumptions were validated through the computation of covari-
ance kernels, while a convergence study illuminated the approximation power of
the RYIM and RAIM models. The simplicity of these models, combined with the
theoretical developments presented in this chapter, advocate for increased confi-
dence in the use of the derived FPCA basis functions within ITS and vehicular
embedded platforms.

Ultimately, this research not only contributes to the current understanding of
vehicle trajectory modeling, but also paves the way for further exploration and
application in this field.
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4
ProbabilisticMethods forReal-timeUnsu-
pervisedAnomalousTrajectoryDetection

Abstract
Anomaly detection plays a crucial role in numerous Intelligent Transportation

Systems (ITS) applications, as unusual or anomalous behaviors often carry signif-
icant safety implications. Particularly in road traffic, it is of utmost importance to
be able to detect anomaly in real-time so that alert about anomalous trajectories
of surrounding vehicles can be issued soon after sufficient evidence to substantiate
the possibility emerges.

This chapter presents a probabilistic framework including likelihood and Baye-
sian methods to enable real-time hypothesis testing for anomaly detection as obser-
vations accumulate. Operating in an unsupervised manner, the framework elimi-
nates the need for explicit anomaly modeling. The time series data undergoes di-
mensional reduction through Functional Principal Component Analysis (FPCA)
and is then fitted to obtain a prior distribution of FPCA scores. After this, the like-
lihood of time series observations stemming from this prior distribution is com-
puted in real-time.

We conducted a series of numerical experiments to demonstrate the effective-
ness and responsiveness of the proposed methods in detecting common road haz-
ards such as wrong-way driving, overspeeding, and sudden hard-braking. The re-
sults showed successful detection of all presented anomalies and a rapid response
rate, ranging from 40ms to 160ms delay. The framework produced a significantly
lower rate of false alarms compared to the Local Outlier Factor (LOF) method.
Additionally, the framework is capable of calibrating to accommodate different
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sensor types and capabilities (Figure 4.1). It also demands low computational re-
sources, making it readily implementable across various embedded Advanced Dri-
ver Assistance Systems (ADAS) platforms.
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4.1 INTRODUCTION

With the roll-outs of radar and V2X equipped vehicles on the market, much traffic
information is expected to be captured. It is presumed that this information, in
addition to many other already available information sources such as security cam-
eras and traffic crowd-sourcing applications, can deliver more significant benefits
not only for traffic authorities but also for road participants thanks to the popular-
ity of ADAS and autonomous driving systems [78] on newer vehicles. However,
the availability of data does not necessarily translate to better safety because cru-
cial information is often buried under an overabundance of irrelevant data. It is
typically observed that accidents usually follow abnormal traffic behavior. Hence,
identifying these situations are crucial to the success of any safety system.

A version of this chapter, titled “Probabilistic Methods for Real-time Unsupervised Anomalous Tra-
jectory Detection”, has been submitted for review to the IEEE Transactions on Intelligent Transportation
Systems in 2021. The authors of this submission are Thinh Hoang, Vincent Martinez, Pierre Maréchal,
and Daniel Delahaye.
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Anomaly detection, a matured field of research, boasts a diversity of method-
ologies suitable for univariate and multivariate time series [79]. These strategies
range from simple parametric models [80] to comprehensive deep learning frame-
works [81], spanning supervised [82,83], unsupervised [84,85], and hybrid learn-
ing approaches. Such detection techniques are fundamental to ITS applications,
including driver alert systems, collision avoidance, and autonomous driving. Very
often, an anomaly detector consists many distinct detectors for each road hazard
type, such as wrong-way driving [86, 87], overspeeding [88], and aberrant brak-
ing [89] detectors. Alternatively, unsupervised machine learning techniques have
facilitated the creation of a new class of algorithms, which can identify abnormal
behaviors based solely on training examples. These techniques have the advantage
of being highly adaptable, which may be important for rapid adaptation to differ-
ent road scenarios.

These methods typically construct a representation of normal behavior trajec-
tories through a dictionary [90], a parametric distribution, or histogram bins [91].
Many such approaches can achieve state-of-the-art online performance; however,
they often demand significant computational resources, a requirement typically
unmet by onboard embedded platforms. Additionally, deep learning techniques
also require large volumes of training data, and their opaque nature inhibits the
derivation of analytical insights that might inform performance guarantees, such
as the system’s adaptability to sensors of differing quality. Furthermore, these tech-
niques often assume the complete availability of trajectories (e.g., from traffic se-
curity cameras), yet onboard sensors typically yield fragmented trajectories due to
frequent occlusions by other road objects. Additionally, safety-oriented systems
must operate under strict time constraints to allow for the identification of escape
routes, which may be executed by the driver or an autonomous driving system.

Such considerations have motivated this chapter to introduce an anomaly de-
tection framework that is capable of real-time trajectory classification, compu-
tationally efficient, adaptable, and simple that enables analyzing of performance
guarantees and accommodating various sensor types and capabilities. The primary
contributions of this chapter are as follows:

1. We introduce an unsupervised anomalous trajectory detection framework,
with the trajectories represented in FPCA scores, and twomethods-likelihood-
based and Bayesian-based, to perform classification of abnormality of the
time series in real-time, as data arrives. The algorithms are recursive, so they
are highly efficient with memory consumption and computational complex-
ity.

2. We perform thorough analytical analysis of the mathematical properties of
this framework to reveal its characteristics, types of trajectory anomalies suit-
able for detection.
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Figure 4.1: A vehicle traveling at excessive speeds can be identified as an anomalous time
series. Analyzing its longitudinal trajectory reveals that the average speed of such a vehicle
significantly exceeds that of others. An alert should be issued immediately upon detection of
this anomaly, typically identifiable around the 20th timestep. However, if the detection system
is overly sensitive, it could potentially trigger false alarms. This can occur when the detector
mistakenly attributes erratic measurements, which could simply be due to noise, to genuine
anomalies.

3. We demonstrate that many common road hazards such as wrong-way dri-
ving, overspeed and abarrent braking can be detected using the same frame-
work.

The organization of this chapter is as follows: Section 4.2 offers a comprehen-
sive review of the existing literature on anomalous trajectory detection. Section
4.3 introduces essential background information on FPCA. Section 4.4 outlines
our proposed anomaly detection framework, which includes two distinct method-
ologies: likelihood-based and Bayesian-based. Following this, in Section 4.5, we
display a variety of numerical simulations to demonstrate the performance of our
algorithm, comparing it to other recognized anomaly detection methods like the
Local Outlier Factor (LOF) and Isolation Forest. A deeper interpretation and dis-
cussion of these results can be found in Section 4.6. The chapter concludes with
Section 4.7.

4.2 RELATEDWORKS

In [92], a Bayesian network was proposed to predict the behavior of the driver
based on curvilinear coordinates of the vehicle on a highway road. Trained on the
NGSIM US-101 dataset [93], the network predicted the driver would proceed on
either keeping or changing lanes. In [94], a measure based on graph centrality
function was proposed to measure the deviation or similarity of one vehicle to the
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neighboring vehicles. It was discovered that the various centrality functions, like
degree centrality and closeness centrality, can reflect the aggressiveness in driving
style, which may be harmful to other traffic participants. In [95], authors used
game theory to model the behavior by benefits of taking specific actions against
other drivers. Several datasets with labels on human driving behavior are given
in [96]. A human evaluated driving style using LASSO for feature selection and
prediction by a simple yet efficient linear regression model was constructed in [97].

On the deep learning side, [98] proposed a framework based on generative
adversarial network (GAN) to detect anomalies in time series with application
to mobility data. In [99], a GAN was proposed to mimic the driving style of
the drivers. Although quite powerful, these methods require a very large training
dataset, and a powerful hardware to run in real-time.

Reconstruction-based Anomaly Detection is another popular approach built
upon the observation that similar subjects (trajectories) can be represented by a
much simpler object (in sparse coding context, a very sparse vector) that yields mi-
nor reconstruction error. In [100], the approach was proposed to design an online
algorithm that detects anomalies in the video stream. Spatial-temporal points of
interest from video sequences formed cuboids that resulted in sparse vectors when
represented in a dictionary. Unusual events were noted when reconstruction er-
ror exceeded a predefined threshold. [83] presented a similar approach but opted
for the ℓ0 norm to regularize sparsity. In [80], the authors presented a parametric
method that learned a Gaussian mixture model to identify anomalous behaviors.
In contrast, [101] suggested a Bayesian nonparametric framework for detection of
collisions and nearby passes at intersections based on the Hidden Markov Model
(HMM). Due to the nature of sequential data, HMMs are also popular, such as
in [102] where trajectories were separated into sub-trajectories where a Dirichlet
process combined with HMM look for the anomaly. It is noteworthy that al-
though the majority of these approaches work with video sequences as input, they
are general enough to work with a variety of other data types, including time-series
and entropy [103] or energy functions [104] [30].

Aside from learned basis, other natural bases for time series such as Fourier ba-
sis, Spline basis were also explored [105]. In [106] [107], PCA was used to reduce
the dimension of the feature vector for more robust performance of classification
algorithms. PCA in the functional domain (or FPCA), particularly with energy
function, was successfully adopted for the identification of anomalous landing tra-
jectories in [30]. Under appropriate representations, it is possible to use various
machine learning techniques to classify anomalous trajectories. For example, [108]
uses a Self-Organizing Map Neural Network, [42] used a K-means clustering on
Fuzzy membership function. Various distances between observed trajectory to
other nominal trajectories can also be used: Hausdorff distance [109] or Dynamic
Time Warping (DTW) [110].
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Despite the variety of approaches in the literature, existing methods still en-
counter several challenges. For example, strategies that depend on transforms,
such as the one referenced in [30], require a complete trajectory for detection,
rendering them unsuitable for real-time applications where observations are con-
tinuously gathered over time. The common solution of using a sliding window
encounters its own issues: the autocorrelation feature used for detection is lost
between subsequent time windows, and observations must entirely fill the sliding
window before classification can begin.

In this dissertation, we propose a comprehensive framework capable of per-
forming real-time hypothesis testing for representations transformed by Functional
Principal Component Analysis (FPCA) basis functions. However, its application
is not restricted to this use. The framework is compatible with all linear transforms,
including Fourier and Discrete Cosine Transform (DCT), among others. The goal
is to enable real-time hypothesis testing, which allows for immediate alerts once
enough evidence has been gathered to confirm abnormal behavior.

4.3 ANOMALY DETECTION FRAMEWORK

The framework is structured into two distinct stages: the learning phase and the de-
tection phase, as depicted in Fig. 4.2. The learning phase applies FPCA to reduce
the dimensionality of time series trajectory data. This process yields a simplified,
low-dimensional representation of the trajectories, facilitating the subsequent fit-
ting of distribution parameters that will be used during the detection or operation
phase.

The detection phase involves real-time hypothesis testing, primarily revolving
around the null hypothesis, represented as𝐻0: observations originate from a “nom-
inal” support of the representation space.

The key objective of this detection framework is to determine whether there is
enough evidence to reject the null hypothesis.

4.3.1 Learning Phase

Consider a specific road patch, denoted as 𝑃 , which is presumed to be a rectangu-
lar section with dimensions 𝑤 × 𝑙 . It’s important to note that within this patch,
a single traffic mode exists at any given time, implying that the traffic pattern re-
mains homogeneous. An illustrative example of such a patch could be a segment
of a carriageway, where vehicles are mandated to maintain the same direction and
adhere to a uniform speed limit (refer to Fig. 4.3). A patch containing two lanes
moving in opposite directions would be deemed invalid.

Trajectories of vehicles traversing the designated patch 𝑃 could be extracted
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Figure 4.2: Outline of the two phases of our detection framework for anomalous time series.
The learning phase uses dimensionality reduction for efficient learning of the representation
distribution. The detection phase performs real time hypothesis testing of anomalous trajec-
tory.

from a security camera like the NGSIM-101 dataset [111] or V2X Cooperative
Awareness Message (CAM) traces [112]. This data forms the training set S =
(𝑥𝑖
𝑘
, 𝑦𝑖
𝑘
), 𝑖 ∈ 0, 1, . . . , 𝑛, 𝑘 ∈ 1, 2, . . . , 𝑁𝑣 . It’s worth noting that vehicles may pass

through the patch 𝑃 at various speeds, resulting in a significant variance in the
lengths of the trajectories. To address this, we analyze the distribution of these
lengths, selecting its mode value as 𝑛. We then adjust the trajectories accordingly:
those shorter than 𝑛 are extended using cubic splines, while longer ones are trun-
cated. The moment a vehicle enters the patch is defined as 𝑖 = 0.

Consider a training set of vehicle trajectories with a consistent temporal length
𝑛 denoted as S𝑥 = {x𝑘 ∈ R𝑛, 1 ≤ 𝑘 ≤ 𝑁𝑣 } for the lateral (lane changing) com-
ponent, and S𝑦 = {y𝑘 ∈ R𝑛, 1 ≤ 𝑘 ≤ 𝑁𝑣 } for the longitudinal component. We
can use Discrete FPCA (as detailed in section 2.3) to determine the FPCA scores
(also referred to as representations) for each individual trajectory [113, 114]. In
essence, FPCA converts a time-domain trajectory vector R𝑛 into a representation
vector also of dimension R𝑛. However, only the first few elements carry significant
weight, with the rest approaching zero. Consequently, we only consider the first
𝑚 << 𝑛 coefficients to derive the sets of representations P𝑥 = {z𝑥,𝑘 ∈ R𝑚, 1 ≤
𝑘 ≤ 𝑁𝑣 } and P𝑦 = {z𝑦,𝑘 ∈ R𝑚, 1 ≤ 𝑘 ≤ 𝑁𝑣 } for the lateral and longitudinal
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P

Figure 4.3: Illustration of the road patch of interest 𝑃 . All vehicles should be moving in the
same direction within the road patch.

components of the trajectory, respectively.
The final step involves fitting a Gaussian mixture, denoted as 𝑝𝔐 ≜ 𝑝 (𝑎 |𝔐),

onto these representation sets P𝑥 ,P𝑦 using the EM algorithm. Each Gaussian
component, represented as 𝑝𝑎𝑖 within the mixture, is associated with a distinct
nominal traffic mode. Consider a situation where a road patch includes a highway
ramp, vehicles may decide to proceed straight or make a right turn to follow the
ramp off the highway. In such instances, two distinguishable clustersmight emerge
in the representation space, leading the mixture to comprise two components.

4.3.2 Detection Phase

We formalize our problem as follows. An ego-vehicle 𝐸 traveling near a potential
outlier vehicle𝑂 and records a series of state observations from𝑂 denoted asx1:𝑛 =
[𝑥1, 𝑥2, . . . , 𝑥𝑛]>, 𝑛 < 𝑡𝑚𝑎𝑥 . The random variable 𝑥𝑘 denotes the state observation
at time 𝑇𝑜𝑏𝑠 + (𝑘 − 1)𝑇𝑠 , given that observation starts at 𝑇𝑜𝑏𝑠 and the sampling
time is 𝑇𝑠 . For convenience, suppose 𝑇𝑜𝑏𝑠 = 𝑘𝑇𝑠, 𝑘 ∈ N. We also denote 𝑥𝑖 as the
random variable of observation at 𝑖𝑇𝑠 . In the following, two detection methods
will be presented, one based on likelihood computation and another on posterior
distribution computation, a Bayesian method.

Likelihood Method

Given a latent representation 𝑎, like a vector of FPCA scores, assume that each
measurement of the trajectory is independent, the likelihood distribution can be
written as:

𝑝 (𝑥1:𝑛 |𝑎) =
𝑛∏
𝑖=1

𝑝 (𝑥𝑖 |𝑎) (4.1)
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The learning phase has given us the prior distribution of latent representation 𝑝 (𝑎)
hence it is possible to compute the marginal likelihood :

L𝔐 ≜ 𝑝 (𝑥1:𝑛) =
∫
𝑎
𝑝 (𝑥1:𝑛 |𝑎)𝑝 (𝑎)𝑑𝑎 =

∫
𝑎

𝑛∏
𝑖=1

𝑝 (𝑥𝑖 |𝑎)𝑝 (𝑎)𝑑𝑎 (4.2)

The marginal likelihood can be used to test the hypothesis, 𝐻0. As will be obvious
later, themarginal likelihood converges to a value proportional to the distance from
the origin to the true latent representation, 𝑎∗, which generates the observations.

We consider a particular class of observations as functionals that admit a unique
linear decomposition:

x|𝑎 =
𝑚∑
𝑘=0

𝑎𝑘𝜙𝑘 (𝑥), 𝑚 < +∞ (4.3)

and that {𝑎𝑘} ∈ R𝑚 is a Gaussian random representation vector that follows
N(𝑎; 𝜇𝑎; Σ𝑎). Hence, in the discrete domain, a segment of vehicle trajectory could
be written as:

𝑥𝑖 = 𝜇𝑇𝑜𝑏𝑠+𝑖 +
𝑚∑
𝑘=1

𝑎𝑘𝜙
𝑇𝑜𝑏𝑠+𝑖
𝑘

(4.4)

where 𝜖𝑖 ∼ N(0;𝜎𝜖2) (i.i.d) is related to the sensor measurement error.
Note that because 𝑇𝑜𝑏𝑠 is unknown, [115] suggested replacing 𝑇𝑜𝑏𝑠 with an un-

known 𝑇𝑜𝑏𝑠 that maximizes L𝔐:

maxL𝔐 = max
𝑇𝑜𝑏𝑠

∫
𝑎

𝑛∏
𝑖=1

𝑝 (𝑥𝑖 |𝑎)𝑝 (𝑎)𝑑𝑎 (4.5)

where 𝑥𝑖 follows (4.4). In the following, we assume that𝑇𝑜𝑏𝑠 is known, since it can
otherwise be found with a simple line search procedure.

Recursive analytical solutions. Closed-form solution for problem (4.5) exist
when 𝑝 (𝑎) is a simple Gaussian distribution (or even a Gaussian mixture, due to
the linearity of integral). For the moment, suppose the measurement noise 𝜖𝑖 = 0.
Consider the term:

L𝔐 =
∫
𝑎

𝑛∏
𝑘=1

𝑝 (𝑥𝑘 |𝑎)𝑝 (𝑎)𝑑𝑎 =
1

(𝜎𝜖
√
2𝜋)𝑛

1

(2𝜋)𝑚/2
√
𝑑𝑒𝑡 (Σ𝑎)∫

𝑎
exp

[
−1
2
(𝑎 − 𝜇𝑎)>Σ−1𝑎 (𝑎 − 𝜇𝑎)

− 1

2𝜎2𝜖

𝑛∑
𝑘=1

(
𝑥𝑘 − 𝜇𝑇𝑜𝑏𝑠+𝑘 −

𝑚∑
𝑗=1

𝑎 𝑗𝜙
𝑇𝑜𝑏𝑠+𝑘
𝑗

)2 𝑑𝑎
(4.6)
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Denote Φ𝑇𝑜𝑏𝑠+𝑘 = [𝜙𝑇𝑜𝑏𝑠+𝑘1 , 𝜙𝑇𝑜𝑏𝑠+𝑘2 , . . . ]>, L𝔐 becomes:

L𝔐 ∝
∫
𝑎
exp

[
−1
2

(
𝑎>Σ−1𝑎 𝑎 − 2𝑎>Σ−1𝑎 𝜇𝑎 + 𝜇>𝑎 Σ−1𝑎 𝜇𝑎

)
− 1

2𝜎2𝜖

𝑛−1∑
𝑘=0

( (
𝑥𝑘

)2
+

(
𝜇𝑇𝑜𝑏𝑠+𝑘

)2
+

(
Φ𝑇𝑜𝑏𝑠+𝑘

>
𝑎
)2

−2𝑥𝑘𝜇𝑇𝑜𝑏𝑠+𝑘 − 2𝜇𝑇𝑜𝑏𝑠+𝑘Φ𝑇𝑜𝑏𝑠+𝑘>𝑎 − 2𝑥𝑘Φ𝑇𝑜𝑏𝑠+𝑘>𝑎
)]
𝑑𝑎

(4.7)

We further let𝐶𝑇𝑜𝑏𝑠+𝑘× = 1
𝜎2𝜖
(Φ𝑇𝑜𝑏𝑠+𝑘 ⊗Φ𝑇𝑜𝑏𝑠+𝑘) where ⊗ being the outer product, and

𝐶𝑇𝑜𝑏𝑠+𝑘† = 1
𝜎2𝜖
(−𝜇𝑇𝑜𝑏𝑠+𝑘 + 𝑥𝑇𝑜𝑏𝑠+𝑘)Φ𝑇𝑜𝑏𝑠+𝑘>, then equation (4.7) can be rewritten as:

L𝔐 ∝
∫
𝑎
exp

[
− 1
2

[
𝑎>

(
Σ−1𝑎 +

𝑛−1∑
𝑘=0

𝐶𝑇𝑜𝑏𝑠+𝑘×

)
𝑎

−2
(
Σ−1𝑎 𝜇𝑎 +𝐶

𝑇𝑜𝑏𝑠+𝑘
†

)>
𝑎 +

(
𝜇>𝑎 Σ

−1
𝑎 𝜇𝑎 +

𝑛−1∑
𝑘=0

𝜄𝑇𝑜𝑏𝑠+𝑘
) ] ]

𝑑𝑎

where we have replaced:

𝜄𝑖+𝑘 =
1

𝜎2𝜖
(𝑥𝑘 − 𝜇𝑇𝑜𝑏𝑠+𝑘)2 (4.8)

The exponent, after completion of squares, bares the form of a Gaussian distribu-
tion’s exponent, with the new covariance and mean:

Σ∗−1𝑎 = Σ−1𝑎 +
𝑛−1∑
𝑘=0

𝐶𝑇𝑜𝑏𝑠+𝑘× (4.9)

and

𝜇∗𝑎 =

(
Σ−1𝑎 +

𝑛−1∑
𝑘=0

𝐶𝑇𝑜𝑏𝑠+𝑘×

)−1 (
Σ−1𝑎 𝜇𝑎 +

𝑛−1∑
𝑘=0

𝐶𝑇𝑜𝑏𝑠+𝑘†

)
(4.10)

Equation (4.9) reflects the gain of information from a bare hypothesis, sequentially
with time as new measurements arrive. The mean shift is shown in (4.10). Finally,
to perform the marginalization integral in (4.5), we use the Euler-Poisson integral
to yield:

L𝔐 =
1

(𝜎𝜖
√
2𝜋)𝑛

√
𝑑𝑒𝑡 (Σ∗𝑎)
𝑑𝑒𝑡 (Σ𝑎)

exp

(
−1
2

(
−𝜇∗>𝑎 Σ∗−1𝑎 𝜇∗𝑎 + 𝜇>𝑎 Σ−1𝑎 𝜇𝑎 +

𝑛−1∑
𝑘=0

𝜄𝑇𝑜𝑏𝑠+𝑘
)) (4.11)
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It is noteworthy that (4.9), (4.10) can be used for the recursive calculation of
L𝔐. It will become obvious later that these expressions also allow for the calcula-
tion of the posterior mean and covariance in the Bayesian method. The details are
shown in Algorithm 4.1.

Algorithm 4.1: Recursive Computation of Posterior Distribution Parameters andMar-
ginal Likelihood.

1: initialize Σ∗−1𝑎 ← Σ−1𝑎 , 𝜇∗′𝑎 ← Σ−1𝑎 .
2: for 𝑇𝑜𝑏𝑠 ∈ N do
3: if data arrives then
4: Σ∗−1𝑎 ← Σ∗−1𝑎 + 1

𝜎2𝜖
(Φ𝑇𝑜𝑏𝑠+𝑘 ⊗ Φ𝑇𝑜𝑏𝑠+𝑘)

5: 𝜇∗
′
𝑎 ← 𝜇∗

′
𝑎 + 1

𝜎2𝜖
(−𝜇𝑇𝑜𝑏𝑠+𝑘 + 𝑥𝑇𝑜𝑏𝑠+𝑘)Φ𝑇𝑜𝑏𝑠+𝑘>

6: 𝜇∗𝑎 ← Σ∗𝑎𝜇
∗′
𝑎

7: L𝔐 (𝑇𝑜𝑏𝑠) ← Equation (4.11)
8: end if
9: end for

10: return max𝑇𝑜𝑏𝑠 𝐿𝔐

Bayesian method

From Bayes Theorem:

𝑝 (𝑎 |𝑥1:𝑛) =
𝑝 (𝑥1:𝑛 |𝑎)𝑝 (𝑎)∫

𝑎
𝑝 (𝑥1:𝑛 |𝑎)𝑝 (𝑎)𝑑𝑎

∝𝑎 𝑝 (𝑥1:𝑛 |𝑎)𝑝 (𝑎), (4.12)

which is nothing but the integrand of L𝔐 in (4.6). Because a Gaussian form is
exhibited in the integrand of equation (4.3.2), it can be deduced that (4.9) and
(4.10) are the covariance and mean of the posterior distribution, respectively.

The likelihood method yields a single real number, which decreases over time
as more observations are incorporated. In contrast, the Bayesian method generates
a distribution, wherein the eigenvalues of the covariance matrix decrease with time,
suggesting a more reliable posterior estimate. In the subsequent section, the results
are presented, enabling the use of these values for hypothesis testing.

4.3.3 Real-time Hypothesis Testing with the Marginal Likelihood

Suppose that the trajectories learned in the learning phase came from a ranging
sensor that can be modeled with the following measurement model:

𝑥𝑖 = 𝑥𝑖 + 𝜖𝑖, (4.13)
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where 𝜖𝑖 ∼ N(0, 𝜎2𝜖 ). For this marginal likelihood method, we also assume that 𝑥𝑖
satisfies (4.4). The usual way to define anomaly in an unsupervised manner is as
follows. Recall that the KL decomposition of a functional is:

𝑓𝑖 (𝑡) =
∞∑
𝑗=0

𝑎𝑖 𝑗𝑣 𝑗 (𝑡), where E[𝑎𝑖 𝑗 ] = 0. (4.14)

Definition 4.1. A trajectory is defined as abnormal if the Euclidean distance from
its FPCA representation 𝑎∗ in (4.14) to the centroid of the training set’s FPCA
representations is larger than some threshold 𝑑:

| |𝑎∗ − E[𝑎] | |2 ≥ 𝑑, (4.15)

and from the Karhunen-Loeve theorem, it is known that E[𝑎] = 0, thus the defi-
nition is equivalent to:

| |𝑎∗ | |2 ≥ 𝑑. (4.16)

Given 𝑝
(
𝑥𝑖 |𝑎

)
= 1√

2𝜋𝜎𝜖
𝑒
− (𝑥

𝑖−𝜇𝑖−Φ𝑖>𝑎)2
2𝜎2𝜖 and 𝑥𝑖 = Φ𝑖

>
𝑎∗ + 𝜇𝑖 + 𝜖𝑖 . Then:

𝑝
(
𝑥𝑖 |𝑎

)
=

1
√
2𝜋𝜎𝜖

𝑒
− (Φ

𝑖> (𝑎∗−𝑎) +𝜖𝑖)2
2𝜎2𝜖

=
1

√
2𝜋𝜎𝜖

𝑒
− (Φ

𝑖> (𝑎∗−𝑎) )2
2𝜎2𝜖 𝑒

−
(
𝜖𝑖
2+2Φ𝑖> (𝑎∗−𝑎)𝜖𝑖

)
2𝜎2𝜖

(4.17)

Substituting into (4.2) we have:

L𝔐 =
∫
𝑎

1

(2𝜋) 𝑛+𝑚2 𝜎𝑛𝜖
√
det(Σ𝑎)

𝑒
−

∑𝑛
𝑖=1(Φ𝑖> (𝑎∗−𝑎) )2

2𝜎2𝜖
− 1

2 (𝑎−𝜇𝑎)>Σ−1𝑎 (𝑎−𝜇𝑎)

𝑒
−

∑𝑛
𝑖=1

(
𝜖𝑖
2+2Φ𝑖> (𝑎∗−𝑎)𝜖𝑖

)
2𝜎2𝜖 𝑑𝑎

Defining the variables 𝑏 = 𝑎 − 𝜇𝑎, 𝑏∗ = 𝑎∗ − 𝜇𝑎 ⇒ 𝑎∗ −𝑎 = 𝑏∗ −𝑏 and 𝑑𝑎 = 𝑑𝑏, we
have:

L𝔐 =
∫
𝑎

1

(2𝜋) 𝑛+𝑚2 𝜎𝑛𝜖
√
det(Σ𝑎)

𝑒
−

∑𝑛
𝑖=1(Φ𝑖> (𝑏∗−𝑏))2

2𝜎2𝜖
− 1

2𝑏
>Σ−1𝑎 𝑏

𝑒
−

∑𝑛
𝑖=1

(
𝜖𝑖
2+2Φ𝑖> (𝑏∗−𝑏)𝜖𝑖

)
2𝜎2𝜖 𝑑𝑏
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The term 1/[(2𝜋) 𝑛+𝑚2 𝜎𝑛𝜖
√
det(Σ𝑎)] can be recognized simply as a normalization

constant. To condense and streamline the calculation steps, it can be denoted as
𝐶 (𝑛). Now, by completing the squares:

L𝔐 = 𝐶 (𝑛)
∫
𝑎
exp

[
− 1

2𝜎2𝜖

𝑛∑
𝑖=1

(
Φ𝑖
>
𝑏∗

)2
+

1

𝜎2𝜖

𝑛∑
𝑖=1

(
Φ𝑖
>
𝑏∗Φ𝑖

>
𝑏
)
− 1
2
𝑏>

(
1

𝜎2𝜖

𝑛∑
𝑖=1

Φ𝑖Φ𝑖
> + Σ−1𝑎

)
𝑏

]
exp

−
∑𝑛
𝑖=1

(
𝜖𝑖

2 + 2Φ𝑖> (𝑏∗ − 𝑏) 𝜖𝑖
)

2𝜎2𝜖

 𝑑𝑏
Taking the Poisson-Euler integral and get the log of both sides:

logL𝔐 = log𝐶 (𝑛) + 𝑚
2
log(2𝜋) + 1

2
log det Σ∗

+ 1

2𝜎2𝜖

[ (∑
𝑖

Φ𝑖
>
𝑏∗Φ𝑖

> +
∑
𝑖

Φ𝑖
>
𝜖𝑖

)
Σ∗

𝜎2𝜖

(∑
𝑖

Φ
𝑖
𝑏∗>Φ𝑖 +

∑
𝑖

Φ𝑖𝜖𝑖

)
−

∑
𝑖

(
Φ𝑖
>
𝑏∗ + 𝜖𝑖

)2 ] (4.18)

where

Σ∗ =

(
1

𝜎2𝜖

𝑛∑
𝑖=1

Φ𝑖Φ𝑖
> + Σ−1𝑎

)−1
For convenience, we let log𝐷 (𝑛) = log𝐶 (𝑛) + 𝑚

2 log(2𝜋) +
1
2 log det Σ

∗ and no-
tice that this term is independent of 𝑏. As a result, computation of 𝐷 (𝑛) can be
bypassed if we let 𝑏∗ = 0 to obtain the marginal likelihood curve log𝐷 (𝑛), then
subtract log𝐷 (𝑛) from L𝔐.

Perfect Measurement Case

We solve the simple case of perfect measurements (no noise, or 𝜖𝑖 = 0). Then,
(4.18) becomes:

logL𝔐 = log𝐷 (𝑛) + 1

2𝜎2𝜖

[ (∑
𝑖

Φ𝑖
>
𝑏∗Φ𝑖

>
)
Σ∗

𝜎2𝜖(∑
𝑖

Φ
𝑖
𝑏∗>Φ𝑖

)
−

∑
𝑖

(
Φ𝑖
>
𝑏∗

)2 ]
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Figure 4.4: Density function of two 2D Gaussian latent distributions (a) 𝑝 (𝑏∗) and (b)
𝑝 (𝑅−1/2𝑏∗). The latent representation𝐴 is identified as an anomaly due to its substantial dis-
tance from the cluster’s centroid, and the anomaly detection problem is the same in both
latent distributions.

The objective of this framework is to determine whether the latent represen-
tation of the observed trajectory significantly deviates from the cluster’s centroid,
which is also the origin point. However, using Euclidean distance as a direct mea-
sure of this deviation poses challenges, as the interpretation of distance may vary
across different directions. This variation is linked to a greater spread of data points
along the eigenvectors of the covariance matrix, meaning that a data point 𝐴 at a
given distance 𝑑 in this direction may still have more neighboring points than an-
other data point 𝐵, at the same distance 𝑑 but in a different direction (Fig. 4.4).

Mathematically, we would like to find a matrix 𝑅 such that 𝑏∗ = 𝑅𝑐∗ where
𝑐∗ ∼ N(0; I𝑚×𝑚). Then, the distance from𝑏∗ to 0 can be straightforwardly defined
with | |𝑐∗ | |2. One straightforward choice is:

𝑅 = Σ1/2
𝑎 (4.19)

Proposition 4.2. Without measurement noise (𝜖𝑖 = 0), the marginal likelihood
L𝔐 defined in (4.2) is bounded below by:

𝑇 𝑖 = 𝜆1

(
−𝑈 >Σ

∗

𝜎2𝜖
𝑈 +𝑉

)
𝑑, (4.20)

if the Euclidean distance from the transformed latent representation 𝑐∗ = Σ−1/2𝑎 𝑏∗
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to the mean of the transformed prior distribution 𝑝 (Σ−1/2𝑎 𝑎) is 𝑑, where 𝑈 ,𝑉 are
defined in (4.21) and 𝜆1(𝑀) denotes the largest eigenvalue of the matrix 𝑀 .

Proof. The log likelihood expression can be rewritten as:

logL𝔐 = log𝐷 (𝑛) + 1

2𝜎2𝜖

[ (∑
𝑖

Φ𝑖
>
𝑅𝑐∗Φ𝑖

>
)
Σ∗

𝜎2𝜖(∑
𝑖

Φ
𝑖 (𝑅𝑐∗)>Φ𝑖

)
−

∑
𝑖

(
Φ𝑖
>
𝑅𝑐∗

)2 ]
Using the dot product property, with some transformations:∑

𝑖

Φ𝑖
>
𝑅𝑐∗Φ𝑖

>
=

∑
𝑖

(
𝑅>Φ𝑖

)>
𝑐∗Φ𝑖

>
=

∑
𝑖

𝑐∗>
(
𝑅>Φ𝑖Φ𝑖

>)
∑
𝑖

(
Φ𝑖
>
𝑅𝑐∗

)2
=

∑
𝑖

𝑐∗>𝑅>Φ𝑖Φ𝑖
>
𝑅𝑐∗

Hence:

logL𝔐 = log𝐷 (𝑛) + 1

2𝜎2𝜖

[ (
𝑐∗>

(∑
𝑖

(
Φ𝑖Φ𝑖

>
𝑅
)>)) Σ∗

𝜎2𝜖(∑
𝑖

(
Φ𝑖Φ𝑖

>
𝑅
))
𝑐∗ − 𝑐∗>

(∑
𝑖

𝑅>Φ𝑖Φ𝑖
>
𝑅

)
𝑐∗

]
Let:

𝑈 =
∑
𝑖

Φ𝑖Φ𝑖
>
𝑅 = Φ𝑅

𝑉 =
∑
𝑖

𝑅>Φ𝑖Φ𝑖
>
𝑅 = 𝑅>Φ𝑅

(4.21)

We have:
logL𝔐 = log𝐷 (𝑛) − 1

2𝜎2𝜖

[
𝑐∗>

(
−𝑈 >Σ

∗

𝜎2𝜖
𝑈 +𝑉

)
𝑐∗

]
which is a quadratic form. Note that −𝑈 > Σ∗

𝜎2𝜖
𝑈 +𝑉 is positive definite, hence:

logL𝔐 ≥ log𝐷 (𝑛) − 1

2𝜎2𝜖

[
𝜆1

(
−𝑈 >Σ

∗

𝜎2𝜖
𝑈 +𝑉

)
| |𝑐∗ | |2

]
(4.22)

where 𝜆1 indicates the maximum eigenvalue of −𝑈 > Σ∗

𝜎2𝜖
𝑈 +𝑉 . □
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Proposition 4.3. The bound of (4.22) is tight. Assume that 𝑄 is full-rank. In case
of infinite observations, the lower bound converges to:

𝑇∞ = −1
2
| |𝑐∗ | |22 (4.23)

Proof. We rename Φ to 𝑆𝑛 = Φ =
∑𝑛
𝑖=1 Φ

𝑖Φ𝑖
> for emphasis on the evolution of Φ

with time. From (4.21), 𝑈 = 𝑆𝑛𝑅,𝑉 = 𝑅𝑇𝑆𝑛𝑅.

1

𝜎2𝜖

(
𝑈 >

Σ∗

𝜎2𝜖
𝑈 −𝑉

)
=

1

𝜎2𝜖
𝑅>

(
𝑆>𝑛 Σ

∗ 1

𝜎2𝜖
− 𝐼

)
𝑆𝑛𝑅

=
1

𝜎2𝜖
𝑅>

(
𝑆>𝑛

(
1

𝜎2𝜖
𝑆𝑛 + Σ−1𝑎

)−1 1

𝜎2𝜖
− 𝐼

)
𝑆𝑛𝑅

As Σ−1𝑎 is positive definite, we can perform an eigen-decomposition Σ−1𝑎 = 𝑄Λ𝑄>

and use the matrix inversion lemma:(
1

𝜎2𝜖
𝑆𝑛 + Σ−1𝑎

)−1
=

(
𝑆𝑛
𝜎2𝜖

)−1
−

(
𝑆𝑛
𝜎2𝜖

)−1
𝑄

(
Λ−1 +𝑄>

(
𝑆𝑛
𝜎2𝜖

)−1
𝑄

)−1
𝑄>

(
𝑆𝑛
𝜎2𝜖

)−1
Hence:

1

𝜎2𝜖

(
𝑈 >

Σ∗

𝜎2𝜖
𝑈 −𝑉

)
= −𝑅𝑄

(
Λ−1 +𝑄>𝜎2𝜖𝑆−1𝑛 𝑄

)−1
𝑄>𝑅

and as 𝑆𝑛 →∞, combined with 𝑄 being full rank:

1

𝜎2𝜖
𝜆1

(
𝑈 >

Σ∗

𝜎2𝜖
𝑈 −𝑉

)
→ 𝜆1(−𝑅Σ−1𝑎 𝑅) = −1,

by definition of 𝑅 = Σ1/2
𝑎 . Proposition 4.3 follows. □
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Noisy Measurement Case

In this section, we derive the likelihood of anomaly when measurements are cont-
aminated with Gaussian white noise, that is 𝜖𝑖 ≠ 0. Rewriting (4.18) as follows:

logL𝔐 = log𝐷 (𝑛) + 1

2𝜎2𝜖

[
− 𝑐∗>

(
−𝑈 >Σ

∗

𝜎2𝜖
𝑈 +𝑉

)
𝑐∗

+2
(∑
𝑖

𝜖𝑖Φ
𝑖>

)
Σ∗Φ𝑅

𝜎2𝜖
𝑐∗ +

(∑
𝑖

𝜖𝑖Φ𝑖
>
)
Σ∗

𝜎2𝜖

(∑
𝑖

Φ𝑖𝜖𝑖

)
−

∑
𝑖

(
𝜖𝑖

2 + 2Φ𝑖>𝑅𝑐∗𝜖𝑖
) ]

which can be rewritten as:

logL𝔐 = log𝐷 (𝑛) + 1

2𝜎2𝜖

[
− 𝑐∗>

(
−𝑈 >Σ

∗

𝜎2𝜖
𝑈 +𝑉

)
𝑐∗

+2
(∑
𝑖

𝜖𝑖Φ𝑖
>
) (

Σ∗Φ

𝜎2𝜖
− 𝐼

)
𝑅𝑐∗

+
(∑
𝑖

𝜖𝑖Φ𝑖
>
)
Σ∗

𝜎2𝜖

(∑
𝑖

Φ𝑖𝜖𝑖

)
−

∑
𝑖

𝜖𝑖
2
]

= log𝐶 (𝑛) + 1

2𝜎2𝜖
[𝐴 + 𝐵 +𝐶 − 𝐷]

Term 𝐴 is the same as in the perfect measurement case. For term 𝐵, let us define
𝛾 =

∑
𝑖 𝜙

𝑖𝜖𝑖 (note E𝛾 = 0). Define 𝐺 and use the matrix inversion lemma:

𝐺 =

(
1
𝜎2𝜖
Φ + Σ−1𝑎

)−1
Φ

𝜎2𝜖
− 𝐼 =

(
𝐼 +

(
Σ𝑎Φ

𝜎2𝜖

)−1)−1
− 𝐼

= −
(
Σ𝑎Φ

𝜎2𝜖
+ 𝐼

)−1
Then:

𝐵 = 2𝛾>𝐺𝑅𝑐∗

Since Σ𝑎Φ
𝜎2𝜖

is positive definite, there exists an eigen-decomposition 𝑄Λ𝑄𝑇 :

𝐺 = −
(
𝑄Λ𝑄𝑇 +𝑄𝑄𝑇

)−1
= −𝑄 (Λ + 𝐼 )−1𝑄𝑇
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Hence, the eigenvectors of 𝐺 are also the eigenvectors of Σ𝑎Φ
𝜎2𝜖

. In a general FPCA
decomposition, the eigenvalues of 𝐺 can potentially be very large, thus the mea-
surement noise is amplified. However, it is worth noting that this only causes a
false alarm if the anomalous vehicle is whose latent representation of the trajec-
tory 𝑐∗ is parallel to 𝑣1 where 𝑣1 is the eigenvector corresponding to the largest
eigenvalue of𝐺 , and 𝛾 hits the same direction as well. Given the randomness of 𝛾 ,
𝐵 ≈ 0.

For 𝐶, as
(
1
𝜎2𝜖
Φ + Σ−1𝑎

)−1
→ 0 and at the beginning of the detection, | |𝛾 | | is

small, 𝐶 is usually small throughout the whole detection process. That leaves us
with:

logL𝔐 ≈ log𝐷 (𝑛)

+ 1

2𝜎2𝜖

[
−𝑐∗>

(
−𝑈𝑇 Σ

∗

𝜎2𝜖
𝑈 +𝑉

)
𝑐∗ −

∑
𝑖

𝜖𝑖
2

]
(4.24)

It should be noted that, according to Proposition 4.3, the first term converges to
the distance between the latent representation 𝑐∗ and the origin. This effectively
represents the degree of anomaly in the current stream of observations. Therefore,
this term can be interpreted as the “signal” component of the marginal likelihood.
On the other hand, the second term,

∑
𝑖 𝜖
𝑖2, introduces noise that disrupts the

signal, thereby adding complexity to the detection process.
Observe that 𝜎2𝜖 is a parameter of the detector. Since the first term converges

to | |𝑐∗ | |2 irrespective of 𝜎2𝜖 , we can use this variable to optimize the signal-to-noise
ratio. Let’s consider the case where 𝑉𝑎𝑟 [𝜖𝑖] = 𝜎2𝜖,𝑚 :

logL𝔐 − log𝐷 (𝑛) → −
1
2
| |𝑐∗ | |2 −

𝜎2𝜖,𝑚

2𝜎2𝜖

∑
𝑖

𝜖𝑖
2

𝜎2𝜖,𝑚
(4.25)

Then, it is obvious that for best performance, one should keep the ratio𝜎2𝜖,𝑚/𝜎2𝜖 ≈ 0,
or 𝜎2𝜖 sufficiently large.

Because
∑
𝑖 𝜖
𝑖2 follows a 𝜒2 distribution, (4.24) suggests a way to test the hy-

pothesis 𝐻0 with the marginal likelihood L𝔐. Let 𝑃𝑛 be the nominal probability,
i.e., probability that observations are coming from the transformed latent repre-
sentation that is less than a distance of 𝑑 from the origin:

𝑃𝑛 = 𝐹𝜒2

[
− 2 𝜎

2
𝜖

𝜎2𝜖,𝑚
(logL𝔐 − log𝐷 (𝑛))

+ 1

𝜎2𝜖,𝑚

(
−𝑐∗>

(
−𝑈𝑇 Σ

∗

𝜎2𝜖
𝑈 +𝑉

)
𝑐∗

) ] (4.26)

where 𝐹𝜒2 denotes the cumulative distribution function (CDF) of a chi-squared
random variable.
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4.3.4 Bayesian Anomaly Detection

The noise term
∑𝑛
𝑖=1 𝜖

𝑖2, as derived from equation (30), may dominate the sig-
nal term under certain conditions, including: (1) when 𝑛 is large, (2) when the
generative noise 𝜖𝑖 values do not represent independent samples from a Gaussian
distribution, and (3) when the approximation provided by equation (4.3) is unsat-
isfactory. Consequently, these factors can significantly diminish the performance
of an anomaly detector relying on marginal likelihood.

A potential solution is to rely on the Bayesian view to design an alternative
anomaly detector. Let 𝑄 = 𝑅−1. Conditioned on past observations 𝑥1:𝑛, we have
the posterior estimate of 𝑎∗ ∼ N(𝜇∗𝑎, Σ∗𝑎) where 𝜇∗𝑎 and Σ∗𝑎 are computed recursively
fromAlgorithm 4.1. Like before, we introduce a transformed latent representation
𝑐∗ = 𝑅−1𝑎∗ whose prior is the multivariate normal distribution N(0, I):

𝑐∗ ∼ N(𝑄𝜇∗𝑎, 𝑄Σ∗𝑎𝑄>)

We further define:
𝑄∗ = (𝑄Σ∗𝑎𝑄>)1/2

then the random variable:

𝜈 = 𝑄∗−1(𝑐∗ −𝑄𝜇∗𝑎)

is a normal random vector. Equivalently:

𝑐∗ = 𝑄∗𝜈 +𝑄𝜇∗𝑎,

which leads to:

𝑐∗>𝑐∗ = (𝑄∗𝜈 +𝑄𝜇∗𝑎)>(𝑄∗𝜈 +𝑄𝜇∗𝑎)
= 𝜈>𝑄∗>𝑄∗𝜈 + 2𝜇∗𝑎>𝑄>𝑄∗𝜈
+𝜇∗𝑎>𝑄>𝑄𝜇∗𝑎 (4.27)

This expression bears the form of a Generalized Chi-Squared random variable
𝑥>𝑄2𝑥 + q>1𝑥 + 𝑞0 and a closed form analytical solution generally does not exist.
However, note that as Σ∗𝑎 → 0 and𝑄 is full rank, the second order term converges
to zero faster than the first order term. Hence, as Σ∗𝑎 is sufficiently small:

𝑐∗>𝑐∗ ≈ 2𝜇∗𝑎
>𝑄>𝑄∗𝜈 + 𝜇∗𝑎>𝑄>𝑄𝜇∗𝑎 (4.28)

which is simply a Gaussian distribution with parameters:

𝜇𝑝 = 𝜇∗𝑎
>𝑄>𝑄𝜇∗𝑎 (4.29)

𝜎2𝑝 = 4𝜇∗𝑎
>𝑄>𝑄∗𝑄∗>𝑄𝜇∗𝑎 (4.30)
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and the nominal p-value is:

𝑝𝑛 = 𝐹N

(
𝑑2 − 𝜇𝑝
𝜎𝑝

)
(4.31)

where 𝐹N is the CDF of a normal distribution.

4.4 NUMERICAL SIMULATIONS

4.4.1 Data Preprocessing

The NGSIM US-101 dataset [93] comprises genuine vehicle trajectories collected
from traffic cameras installed along a section of the US-101 highway in Califor-
nia. Each trajectory boasts a temporal resolution of up to 0.1 seconds, which is
sufficiently accurate for macroscopic traffic modeling. The dataset includes labels
that extend beyond mere vehicle positions and timestamps to encompass vehicle
dimensions (length and width), the lane the vehicle occupies, and measurements
such as headway, headway distance, and time with respect to leading vehicles.

We defined the road patch 𝑃 whose width spans all the lanes and length is
900ft (≈ 274m) and randomly collected 200 vehicle trajectories passing through
𝑃 . Let 𝑡𝑀 be the mode of the distribution of trajectories length in S. Because
the Discrete FPCA required a time series of equal length, the outliers significantly
longer or shorter than 𝑡𝑀 were removed. Those that fell within the acceptable range
of ±10 time steps were either trimmed or extrapolated with a second-order cubic
spline to meet the requirement (see Fig. 4.5a).

4.4.2 Learning the Nominal Distribution

The discrete FPCA process, described in Section 2.3 revealed that the first two
principal components (Fig. 4.5b) explained up to 99.67% of variance in the dataset.
This allowed us to assume that the first two FPCA components were sufficient to
reconstruct S as well as to discriminate against anomalies. However, it is notewor-
thy that although theoretically on the functional domain 𝐶∞, FPCA will yield an
“almost exact” reconstruction of any functional 𝑓 ∈ 𝐶∞ but realistically, the dis-
crete implementation leads to increasing error towards the end of the trajectories.
For this reason, we proposed to only perform detection on the first 90% segment
of the trajectory, leaving the remaining 10% as a safety margin.

Each time series decomposed with the two principal components above will
become a 2D vector in the representation domain. Since the movement is uni-
modal in this road patch, we opted for fitting a Gaussian distribution 𝑝 (𝑎) over
the set of representation vectors P (Fig. 4.6).
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Figure 4.5: All longitudinal trajectories of vehicles from the NGSIM dataset (a), and (b) the
FPCA components 𝑓1, 𝑓2 (top) the mean component (bottom) used to dimensionally reduce
the trajectories to 2D representations in Fig. 4.6.

4.4.3 Noiseless Detection using the Marginal Likelihood

In the absence of measurement noise, the anomaly threshold boundary is defined
by Proposition 4.3. Fig. 4.7 presents a total of six trajectories, numbered from 0 to
5. Their corresponding representation form, 𝑐∗, as described in Proposition 4.2, is
provided in the second column of Table 4.1. We categorize trajectories with latent
representations located within the unit disc as nominal trajectories, that is, those
corresponding to 𝑑 = 1. Under this classification, approximately 68% (equivalent
to 1 standard deviation) of trajectories are considered nominal.

2000 0 2000
FPCA 1

500

0

500

FP
CA

 2

Figure 4.6: Decomposition of time series in the training set to representation forms. Data
points are yellow scattered dots. The fitted Gaussian distribution contours are also shown in
blue.
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Figure 4.7: On the left-hand side, six sample trajectories are depicted, with the “nominal tra-
jectories” - those with transformed latent representations residing within the unit disc - are
shown in gray. On the right-hand side, the real-time computation of the marginal likelihood
curves that correspond to these six sample trajectories. The threshold corresponding to𝑑 = 1
is the dashed black line. Marginal likelihood curves below this line will trigger the alarm of
anomaly, which mark significant deviation from “nominal trajectories”.

As anticipated, curves with | |𝑐∗ | | ≤ 1 did not trigger any alarms. Alarm was
only raised for curve 5, where | |𝑐∗ | | ≈ 1.57, after only 14 of 150 observations. This
highlights a significant distinction between our methods and other comparison
techniques like sparse representation or sliding window-based techniques. The
latter requires the window to be fully populated before further analysis can occur,
resulting in additional delays.

4.4.4 Detection of Anomaly in The Case of Noise-Contaminated Observations Using
the Marginal Likelihood

Themarginal likelihood detector detailed in (4.26) is showcased as an unsupervised
tool to detect aberrant driving behavior through the demonstration of four test
trajectories depicted in Fig. 4.8(a). These trajectories are representative of: (1)
a typical driving trajectory from the dataset, (2) a vehicle exceeding the average
traffic speed by up to two-fold, notably from timestep 25, (3) a vehicle coming
to an unexpected halt at the 40th timestep, and (4) a vehicle proceeding in an
incorrect direction. The simulation is further refined by the addition of zero-mean
Gaussian White Noise (GWN) with a variance of 1/𝜎2𝜖,𝑚 = 1, mimicking sensor
noise. The marginal likelihoods associated with these trajectories are illustrated in
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Table 4.1: Latent Representation 𝑐∗ and the Responsiveness of the Detection Algorithm with
DetectionThreshold𝑑 = 1. Only the fifth curve has the Euclidean distance to the origin larger
than 𝑑 , thus triggering an alarm at 𝑡 = 14.

Curve Latent Represent. 𝑐∗ = 𝑅𝑏∗ Alarm Delay
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Figure 4.8: (a) Typical anomalous trajectories. (b)Themarginal likelihood computed by Algo-
rithm 4.1. Themean trajectory in (a) was hidden behind the Normal curve, and was added for
visualization purpose only.

Fig. 4.8(b).
The anomaly p-value for each trajectory, calculated using equation (4.26), is

depicted in Fig. 4.9. In this configuration, we have set the variance 1/𝜎2𝜖 to 0.08
and the detection threshold 𝑑 to 1. The black dotted line represents the alarm
threshold set at 𝑝 = 0.05. Within these examples, all abnormal behaviors were
accurately classified. The alarm for the speeding vehicle was triggered at 𝑡 = 35,
while the alarm for the halted vehicle was activated at 𝑡 = 46, representing a delay
of just 6 timesteps.

To underscore the findings, we compare the results with those obtained using
the well-established Local Outlier Factor (LOF) and Isolation Forest (IF) meth-
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Figure 4.9: Marginal likelihoodmethod: probability that the trajectory is nominal. The dotted
black line is the alarm threshold.
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Figure 4.10: Computation of Negative LOF with 𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 5: (a) The LOF (Local Outlier
Factor) for all trajectories, with the first five representing test trajectories and the remaining
ones constituting the training set. (b)The LOF’s progression over time corresponding to partial
observations. The dotted lines represent the thresholds for the 5% and 95% percentiles.
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(a) Sensitivity 1/𝜎2𝜖 = 0.08
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(b) Sensitivity 1/𝜎2𝜖 = 8

Figure 4.11: Bayesian method: probability that the trajectory is nominal with two different
values of sensitivity 1/𝜎2𝜖 . The dotted black line is the alarm threshold set corresponding to
𝑝 = 0.05.

ods for anomaly detection. Our results expose significant limitations within LOF
specifically, but these shortcomings are speculated to be pervasive within the fam-
ily of local density anomaly detection techniques as well. Despite having access to
all measurements, the LOF method only accurately identified the second (speed-
ing) and fourth (wrong-way driving) trajectories (Fig. 4.10), failing to detect the
anomaly of a vehicle that suddenly stopped. Moreover, the progression of LOF
curves as measurements became sequentially available indicated a susceptibility to
false alarms with this approach. For instance, even during normal trajectory, false
alarms were triggered at timesteps 65 and 96when the percentile rank curve crossed
the 5% threshold line.

4.4.5 Anomaly Detection with Bayesian Method

To illustrate the efficacy of the proposed Bayesian anomaly detector (referenced
in Eq. (4.31)), we employ the same test trajectories outlined in the preceding
section. Fig. 4.11(a) depicts the time-varying p-value. It is obvious that, upon re-
ceiving complete observations, all anomalies were accurately classified. Contrast-
ingly, a comparison with Fig. 4.9 indicates a relatively reduced reactivity of the
Bayesian method, and increase in susceptibility to false alarms. Nonetheless, the
performance is significantly better than the baseline LOF, marking a substantial
improvement.
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For example, the vehicle made an abrupt stop at timestep 40. While the con-
fidence level started to decline approximately at the same time, the system didn’t
trigger an alarm until timestep 56, resulting in a delay of 16 timesteps. This delay
is notably longer than the 6 timestep delay demonstrated by the marginal likeli-
hood method. The identification of a vehicle driving in the wrong direction also
experienced a 4 timestep delay, along with a false negative period spanning from
timestep 36 to timestep 50.

Performance trends become apparent when comparing various values of 𝜎2𝜖 .
Decreasing 𝜎2𝜖 is entailed by faster convergence of Σ∗𝑎 to zero. This, in turn, allows
the distance between the transformed latent representation and the origin to be
estimated more accurately, resulting in a more reactive detector. However, this
sensitivity increases the likelihood of false alarms, as can be observed from Fig.
4.11(b), where there are notable dips in confidence early in the time series, and
the false negative period of the wrong-way driving trajectory lasts longer and hits
higher confidence peak.
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Figure 4.12: Anomaly scores computed in real-time with Isolation Forest

The Isolation Forest algorithm (Fig. 4.12) generally exhibits good detection
performance alongside a reduced false alarm rate. However, the initial overlapping
anomaly score values suggest that the initial dozens of timesteps can be disregarded.
Interestingly, the system accurately identified instances of opposite direction dri-
ving from the onset. Furthermore, it correctly classified a suddenly stopped vehicle
with approximately a 25 timestep delay, at around timestep 65. Regarding the de-
tection of a speeding vehicle, the anomaly was recognized as early as timestep 10.
This performance significantly outpaces the marginal likelihood and Bayesian de-
tectors, which only activated at timesteps 35 and 56 respectively.

Table 4.2 provides a comprehensive comparison of the selected methods. Gen-
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Table 4.2: Comparisons between different anomaly detection methods. AT: alarm time, FD:
maximum false negative time period.

Method Normal Speeding Stopped Opposite
AT FD AT FD AT FD AT FD

Marginal Likelihood ∞ 0 35 0 46 0 1 0
Bayesian ∞ 0 56 0 56 0 10 14
LOF 65; 96 4 25 0 48 50 1 0
Isolation Forest ∞ 0 10 0 65 0 1 0

erally, both the marginal likelihood and Bayesian methods exhibit excellent detec-
tion rates. However, the Isolation Forest method is better than the others in terms
of responsiveness. It’s essential to remember that the FPCA-based detector incor-
porates measurement noise into its computation, requiring a greater number of
observations for a reliable testing of hypothesis 𝐻0.

4.5 DISCUSSION

This chapter introduces a comprehensive unsupervised framework designed for
identifying abnormal road vehicle trajectories. The framework draws on two prob-
abilistic methods: the marginal likelihood and the Bayesian posterior estimate.
Detailed formulas pertaining to the Gaussian prior latent representation case and
the Gaussian white noise measurement model, were presented. The entailed in-
depth mathematical analysis provided grounds for a general anomaly detection
framework for PCA and other representational methods, such as [30]. This com-
plete the existing literature by offering a framework that can carry out real-time,
online anomaly classification, in contrary to using a sliding window. Numerical
simulations underscored the efficacy of the system in promptly detecting common
road anomalies like speeding or wrong-way driving with a mere 4-16 time steps
delay.

The marginal likelihood method and the Bayesian method operate within two
distinct domains. The former approximates nominal behaviors and reconstructs
them within the time domain, performing anomaly classification there. Given
that the FPCA transformation is linear, this can be considered as equivalent to the
marginal likelihood method detecting anomalies throughout the entire R𝑛 space.
Conversely, the Bayesian method seeks to classify anomalies within the represen-
tation domain. This is akin to projecting observations onto a subspace R𝑚,𝑚 < 𝑛,
and computing the anomaly score subsequently. Through this interpretation, it
becomes clear that the marginal likelihood method offers quicker responsiveness
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and is potentially less susceptible to false alarms, provided that the approximation
or reconstruction (4.3) remains valid.

The framework presented in this chapter is not confined solely to the trajec-
tories of road vehicles. Instead, it can be adapted to a variety of time series data,
including aircraft trajectories in aviation or the detection of malicious attacks in
computer networking.

Nevertheless, the framework has several identifiable shortcomings. One such
limitation is that the formulas provided are only applicable in cases where there’s a
Gaussian prior over the latent representations. While this is a reasonable assump-
tion for situations with a singular traffic mode, like highways, more complex sce-
narios such as road merges or intersections, may require modeling with a Gaussian
mixture. The unsupervised nature of the systemmay also be perceived as a potential
limitation. While the detector can discriminate if an observed trajectory deviates
from what it learned from the training set, it lacks the capacity to explicitly cate-
gorize anomalies into specific groups such as wrong-way driving or speeding. It
is projected that a machine learning classifier could be instrumental in addressing
this scenario. Moreover, similar to the Fourier Transform, FPCA experiences the
“window effect” when applied to finite time series, which means the approxima-
tion power diminishes near the trajectory’s endpoint. This factor should be duly
considered when constructing the road patch 𝑃 .

4.6 CONCLUSION

In this chapter, we have introduced a novel unsupervised anomaly detection frame-
work and provided an in-depth exploration of its mathematical properties. Our
numerical simulations have convincingly demonstrated that this method exhibits
a robust capability for detecting a wide array of anomalous driving behaviors, with-
out the need for explicit teaching. Despite its current limitation to unimodal data,
the framework offers significant potential in identifying anomalies within time
series data.

Recognizing this limitation to unimodal data, our future work will be devoted
to addressing this issue to extend the applicability of the framework. The proposed
anomaly detection framework is sufficiently versatile to be relevant to a diverse
range of other disciplines, such as aviation and computer networking. It is partic-
ularly pertinent to fields associated with human safety, where the requirement for
a rapid, responsive detection system is paramount.



83

5
Spherical Codec for V2X Trajectory Com-
pression: A Preliminary Study

Abstract
V2X holds enormous potential in augmenting road traffic safety by broadcast-

ing information such as the position and velocity of the vehicle to others, rendering
itself visible to the network even if it is occluded or still far away. However, reg-
ular broadcasting of information by many stations may heavily impact the V2X
channel, leading to a high packet error rate due to collisions, reduced broadcasting
range, delays, and compromises in the readiness of the channel to deliver critical
safety information in time. Therefore, compressing these data is critically needed,
especially in areas with high traffic density. This chapter presents an introduction
to V2X and a novel algorithm, Spherical Codec, to help compress trajectory data.
The codec introduces new data transmission schemes, adaptable to different im-
plementations. By leveraging inference on the functional domain, it is possible to
reduce the transmission frequency while sacrificing a similar amount of accuracy to
the current ITS-G5 redundancy mitigation standard. As a numerical experiment,
the Gaussian-based version of the codec demonstrated a reduction of up to 2 times
improvement in total bytes sent, halved average channel loads, and marginal im-
provement in Packet Delivery Ratio at all transmission distances.
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5.1 V2X

A derivative of this chapter, bearing the title “Spherical Codec for V2X Cooperative Awareness
Trajectory Compression: A Preliminary Study,” was officially published in the Proceedings of the IEEE
Vehicular Technology Conference (VTC) Spring in 2023. The named contributors to this publication
are Thinh Hoang, Vincent Martinez, Pierre Maréchal, and Daniel Delahaye. Replication of content is
conducted under the rights accorded to the authors.

Portions of thematerial in this chapter have been permitted for disclosure in accordance with Patent
Number EP22306821.4, titled “Optimization of Message Generation Frequency and Compression of
V2X Data,” and are represented herein under the applicable rights.
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5.1.1 Introduction

The concept of V2X refers to any communication technology between a vehicle
and another element of the ITS, including road-side units, smart traffic lights, or
other urban traffic facilities. There are many technologies available; some com-
pete, while others complement existing technologies. These operate on various
frequency bands, follow different standardization processes, and have been inde-
pendently tested and deployed in many different countries. Overall, these wire-
less communication technologies can be divided into two categories: short-range
(DSRC), and cellular.

By enabling the exchange of information, safety systems can operate with a
more extensive base of knowledge about the traffic environment, thus creating op-
portunities for better decision-making. It has been estimated that the enabling of
V2X can eliminate 80% of current road crashes [116]. Despite recent enhance-
ments in cellular network technology, DSRC allows an ad-hoc communication
scheme without the need for the availability of a nearby base station. This makes
DSRC more prepared for deployment and enables it to function even in rural and
remote areas where cellular coverage is scarce. In this thesis, we will focus strictly
on DSRC and, more specifically, the European standard of DSRC also known as
ITS-G5, standardized by the European Telecommunications Standards Institute
(ETSI).

5.1.2 ETSI ITS-G5 V2X

In Europe, the frequency spectrum dedicated to DSRC ranges from 5470 MHz to
5925 MHz and is designed based on IEEE 802.11p, using carrier sense multiple
access with collision avoidance (CSMA/CA).The day-one deployment of ITS-G5
consists of three distinct groups of operations operating on different bands (Figure
5.1):

• 5470 MHz - 5725 MHz (ITS-G5C) [117]: Allocated for V2I communications,
• 5795MHz - 5815MHz: Comprising four 5 MHz channels, dedicated to road



5.1. V2X 86

M
anagem

ent

Security

ITS-G5 Access Layer

Applications

RHS/CAA ICRW LCRW

Facilities

CA DEN CP

Networking and 
Transport

GeoNet BTP

IEEE 802.11p LTE-V2X R.14

Figure 5.2: Architecture of the ETSI ITS-G5 stack. Abbreviations: RHS: Road Hazard Signal-
ing, ICRW: Intersection Collision Risk Warning, LCRW: Longitudinal Collision Risk Warning,
CA: Cooperative Awareness, DEN: Decentralized Environmental Notification, CP: Collective
Perception.

transport and traffic telematics,
• 5855 MHz - 5925 MHz (ITS-G5A and ITS-G5B): Comprising a 10 MHz con-

trol channel and six other service channels of the same bandwidth. Most
ITS applications will operate on this band. Non-safety applications will oc-
cupy the band from 5855-5875 MHz, while safety applications will operate
on 5875-5905 MHz. The rest is dedicated to future applications [118].

Figure 5.2 depicts the fundamental architecture of ETSI ITS-G5. It begins
with the access layer at the lowest level, incorporating both the physical and data
link layers. The stack architecture is agnostic to the access layer, meaning that all
services are guaranteed to perform in the same manner whether the underlying
access technology is based on IEEE 802.11p or 3GPP LTE.

All ITS stations are required to comply with the basic set of services located
at the facility layer, including the generation and handling of cooperative aware-
ness messages (CAMs) and Decentralized Environmental Notification Messages
(DENMs), which are emitted on the 5855-5925 MHz band. In essence, all ITS
stations are required to continuously beacon their position and status to the net-
work, as well as have the capability to emit and handle notification messages re-
garding potential road hazards. This dissertation focuses specifically on Coopera-
tive Awareness Messages and attempts to solve several problems pertaining to the
current way CAMs are handled according to the standards [119].
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5.1.3 Cooperative Awareness Message (CAM)

As suggested by their name, CAMs are standardized messages exchanged between
various road participants in the ITS, with the goal of advertising their presence.
Through CAMs, other entities on the road become aware of each participant, fa-
cilitating cooperation between them. The exact content of a CAM depends on
the specific type of station, whether it’s a vehicle or a roadside unit, as well as its
sensing capabilities. Nevertheless, most CAMs will convey basic information such
as the ID, time of emission, motion status (position, speed, acceleration), as well
as the station’s physical attributes such as dimensions, vehicle type, role, and the
characteristics of equipped sensors.

The CA service (Figure 5.3) organizes the generation of CAMs in the ETSI
stack. By design, the CA service does not interact directly with any application
from the layer above. Instead, the perception of road objects is relayed through the
Local Dynamic Map (LDM). The LDM serves as an endpoint for the assimilation
of all sensor data, including data from one’s own sensors, as well as from V2X
messages. The CA service retrieves information about the vehicle status from the
Vehicle Data Provider (VDP). The Position and Time Management (POTI), on
the other hand, provides the synchronized time and position of the vehicle.

The CA service can be further decomposed into four functional blocks which
perform separate functions:

1. Encode CAM: to correctly encode the message according to the standard,
described in the corresponding ASN.1 data structure, per the Packed En-
coding Rules (PER) [120],
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2. Decode CAM: to decode the received CAM,
3. CAM Transmission Management: this function manages all aspects related

to the generation of CAMs, including the beacon frequency, as well as ini-
tialization and termination processes,

4. CAM Reception Management: this function serves the decoded CAM to
the LDM or other applications at the application layer that are interested in
CAMs. It may also verify the validity of CAMs, as well as handle all errors
and exceptions, though this is not strictly required by the standard.

More specifically, CAMs should only be emitted on the control channel and
be single-hop only. CAMs should never be forwarded to other stations. As long
as the station is functional, CAMs should be transmitted with respect to the fol-
lowing limits:

• CAMs should be generated less frequently than the minimum interval of
100 ms, or 10Hz,

• CAMs should be generated more frequently than the maximum interval of
1000 ms, or 1Hz.

The precise interval should be determined according to the specific use case,
which could depend on the station type, the dynamics of the sensed data, as well
as the channel congestion status (CBR, for instance). DCC will generally set an
upper bound for the message generation frequency, and an additional condition
can be used to check for the triggering of a CAM generation, including:

• The difference in heading should exceed 4𝑜 ,
• The difference in position should exceed 4m,
• The absolute difference in speed should exceed 0.5m/s.

There are generally two versions of CAMs that can be generated. A shorter
one contains only mandatory and highFrequencyContainer information as speci-
fied below, while a longer one also includes a lowFrequencyContainer. The long
CAM generation interval should be at least 500ms. This helps prioritize important
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information and prevents the channel from being overwhelmed with information
that is not deemed time-critical, such as information about a vehicle’s lighting sta-
tus (Figure 5.4). In the following, we will briefly describe the information field
required by each container for the case of a vehicle.

1. PDU header: containing protocol version, type of message and the ID of
the station that generates the message,

2. Basic container: containing the type of originating station (vehicle or road-
side unit), and the geographical position of the station. This container is
mandatory for all stations participating in the network,

3. Vehicle high-frequency container (for vehicle stations): also mandatory for
all vehicles, containing fast-changing information like heading and speed,

4. Vehicle low-frequency container (for vehicle stations): optional, containing
slow-changing or not so important information such as vehicle status or
lighting status. It was also specified in [119] that the LF container may also
contain many past data trajectory data points, with each account for 8-9
bytes of the packet size [121]. It will be obvious later that the Spherical
Codec makes the transmission of these past data points redundant,

5. Special Vehicle container: reserved for special vehicles like buses, trams,
vehicles requiring prioritization such as ambulance, police, or transporting
dangerous goods.

A more detailed description of ETSI CAM can be found in [119].

5.1.4 Collective Perception (CP)

With Vehicle-to-Everything (V2X) Cooperative Awareness (CA), a multitude of
road actors, including vehicles, roadside units, and traffic infrastructures, can dis-
seminate information and collaborate wirelessly. Nevertheless, despite the compre-
hensive range of use cases the CA encompasses, inherent technical complexities
have propelled researchers to extend this concept further. For instance, roadside
units can identify pedestrians and other entities not equipped with V2X technol-
ogy, a capacity that is paralleled by radar-equipped vehicles. Consequently, a re-
quirement arises to distinguish the information transmitted by the vehicle itself
from that relating to road objects it can detect, thereby stimulating the advent of
Collective Perception (CP).

The impetus for CP also stemmed from evidence suggesting that fatalities of-
ten originate from collisions involving vehicles and pedestrians or cyclists, as op-
posed to vehicular crashes [122]. On one hand, it remains highly impracticable
to mandate pedestrians, cyclists, or motorcyclists to deploy V2X communication
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devices, thus leaving these road entities virtually invisible to the V2X network.
Conversely, most modern or prospective vehicles, such as the Tesla 3, already pos-
sess an intricate radar system capable of detection, classification, and tracking with
high precision. It is logical for these radar hosts to relay information concerning
these road entities to the V2X network akin to traditional CA objects. Never-
theless, with sensed information, noise and correlations are innately linked to the
estimate. Furthermore, duplication could occur if an object is sensed by multiple
hosts, which exacerbates the complexity of the situation. Consequently, it is un-
feasible to extend the current CA service for the transmission of this information.
It is evident, therefore, that a novel form of V2X service must be developed.

5.1.5 Collective Perception Service

As shown in [2], the goal of CPS is to “share information about perceived objects
(such as vehicles, pedestrians, animals and other collision relevant objects) and per-
ception regions (road regions that allow receiving ITS-Ss to determine unoccupied
regions) in the local environment.”

Like CA, the operation of CP is managed by CPS, which is in charge of CP
messages (CPM) generation and reception. The general architecture of the CPS
in the ITS-G5 stack is shown in Figure 5.5. The key components of CPS include:

1. Local Dynamic Map (LDM): Acting as an information reservoir, the LDM
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gather data from an array of sources including CAMs, CPMs, and radar
measurements. Central to the operation of the LDM is the concept of state
estimation. Furthermore, the LDM functions as the pivotal node for vari-
ous Advanced Driver Assistance Systems (ADAS) components, as well as
the Human Machine Interface (HMI), thereby facilitating the display of
pertinent information to the human operator.

2. Device Data Provider (DDP): This module provides a comprehensive set of
state information, encompassing aspects such as the vehicle’s position (lat-
itude, longitude), velocity, acceleration, and status of lighting and braking
mechanisms. While a duplicate of this data is likewise found in CAMs, the
generation of CPMs requires a number of derived quantities, such as relative
velocity, serving as intermediate variables.

3. Position and TimeManagement (POTI): As the moniker suggests, this mod-
ule is responsible for delivering real-time positional data, in addition to syn-
chronized time utilized for timestamping the CPMs.

4. Service Announcement (SA): This module’s objective is to signal other sta-
tions regarding the host station’s capability to generate CPMs.

5. Multichannel Operation (MCO_FAC): This pertains to the implementation
of multi-channel operation to maximize the effective utilization of channel
bandwidth.

5.1.6 Illustrated Use Cases for CP

As expounded upon in [3], the objective of CPS is to enhance the perceptual ca-
pacity of the CA Service by integrating data collected from vehicular sensors, such
as radars and video cameras. This section encapsulates the scenarios in which CP
proves beneficial through multiple illustrations.

The standard use case of CP, illustrated in Figure 5.6, primarily aims to dissem-
inate sensor-derived information regarding non-connected road entities, such as
pedestrians and cyclists, among other V2X participants. This information typically
includes basic attributes like object size and position, as well as dynamic parame-
ters such as speed and acceleration. It should be noted that the inclusion of road
objects capable of beaconing CAMs in the CPMs is contingent on the specific
implementation of the data fusion module.

Figure 5.7 presents a similar scenario. Here, CPMs serve to render inanimate
road impediments visible to the V2X network. Detection encompasses diverse
road objects, including but not limited to potholes, puddles, tree branches, traffic
cones, road barriers, fences, speed bumps, guardrails, and streetlights. Advanced
recognition systems installed on equipped vehicles facilitate the detection of these
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Figure 5.6: Awareness of non-connected objects. In this scenario, pedestrians are not
equipped with a V2X transmitter, but their presence can be detected with radars from a vehi-
cle. This information is relayed to other network participants via the sending of a CPM [1].

Figure 5.7: CPMs also convey information regarding hazardous road objects such as potholes,
puddles, tree branches or other road equipment [1].

objects, and the resultant benefits are accessible to regular vehicles equipped merely
with a simple V2X transmitter.

As depicted in Figure 5.8, the considered use case involves a roadside unit,
specifically affixed atop traffic lights, incorporating radars and a V2X transmitter,
and demonstrating the capacity to receive CAMs. This unit gather data obtained
from CAMs and its own radar-derived measurements, thereby enhancing the pre-
cision of state estimates encompassing position, velocity, and acceleration. These
so-called “aggregate stations” act as decentralized nodes for data fusion.
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Figure 5.8: CPMs can also be broadcast by aggregating information, including fromCAMs and
proprietary sensors. This is usually done at RSUs stationed at locations that usually witness
complex traffic situations such as intersections where the position and dynamics of vehicles
needed to be accurately tracked [1].

5.1.7 Data Feeding

The previous discussion put great emphasis on data fusion in the transmission and
reception of CPMs. In fact, data fusion prepares the information for CAM/CPM
generation, and processes the raw data from received CAMs/CPMs. It is cus-
tomary, but is almost always by design that the data fusion module will update the
LDM database, from which information will serve different endpoint modules, in-
cluding displaying to users, generation of new CPMs, or other safety applications
such as dangerous driving behavior detection (Figure 5.9).

5.1.8 Standardized ITS-G5 CPM Format

In the following section, we offer a short introduction to the types and formats
of data typically found in a generic CPM, thus providing insight into the nature
of information that is transmitted within the V2X network via CPM. Detailed
specifications can be found in [2].

Every CPM must contain the Management Container, while all other fields
are optional (Fig. 5.10). The inclusion of relevant data fields is determined based
on the specific use case, and whether the host is a vehicle or a roadside unit.
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Figure 5.9: Functional relations between data fusion, LDM and CPS in most designs. Alter-
native designs exist, for example, separate perception database for data fusion can be used
when it is not helpful to incorporate own sensor data into improving the estimates from V2X
messages.
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Figure 5.10: Format of a general CPM [2].

Management Container

This sequence contains 3 fields:

1. stationType: Specifies whether the station is a vehicle or a roadside unit,
2. perceivedObjectContainerSegmentInfo: Denotes the number in the se-

quence, applicable when the original CPM is excessively long, necessitating
its division into multiple segments,

3. referencePosition: Refers to the host’s reference position, which is generally
the center of the vehicle.

Station Data Container

Thehost’s identity, as a vehicle or a roadside unit, dictates the appropriate container
to be used. We will primarily concentrate on the vehicle scenario.

1. heading: Represents the vehicle’s heading in relation to the magnetic North.
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2. driveDirection: Preset as forward. If the vehicle is driving in reverse, it is
indicated here.

3. acceleration: Recorded via longitudinal, lateral, and vertical acceleration
value fields.

4. yawRate: Documents the rate of yaw.
5. roll, pitch angles: Supplementary to determine the vehicle’s attitude. These

fields are optional.
6. vehicleLength, vehicleWidth, vehicleLength: Used to describe the dimen-

sions of the vehicle within a 3D space.

Sensor Information Container

This sequence encompasses fields illustrating the vehicle’s sensing capability, which
includes the sensor type, detection range, and shape of the view area.

1. sensorID: Specifies the unique ID of the sensor.
2. type: Distinguishes between radars, cameras, and so forth.
3. detectionArea: Describes the sensor’s area of detection and its range.
4. freeSpaceConfidence: Addressing a common issue with sensor data, which

is the ambiguity of whether a non-detected object was absent or outside the
sensor’s perception range, the freeSpaceConfidence container contributes
additional information regarding the area where the sensor can confidently
report the absence of any object.

Perceived Object Container

This particular container constitutes a significant proportion of each CPM’s overall
size. Some selected fields are:

1. objectID: The unique identifier allocated to the detected object,
2. timeOfMeasurement: The time at which the object was sensed, offering

other parties a gauge of whether the information remains current,
3. objectConfidence: The spatial confidence interval signifying the uncertainty

inherent in the measurements,
4. xDistance, yDistance, zDistance, xSpeed, ySpeed, zSpeed, xAcceleration, yAc-

celeration, zAcceleration, yawAngle: These represent the position and dy-
namic parameters of the sensed object.
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Figure 5.11: Simulated Channel Busy Ratio (CBR) of Highway Scenarios with CPM Transmis-
sion set to different beacon frequency values [3].

Free Space Addendum

In a similar vein to the freeSpaceConfidence, this addendum imparts additional
details concerning areas devoid of any object. A more comprehensive explanation
of the format is accessible in [3].

5.1.9 Message Generation Paradigm

A central challenge with Collective Perception is its substantial bandwidth require-
ments for standard operations. This is anticipated considering that, unlike a CAM,
which only conveys information regarding the host, a CPM transmits roughly
equivalent (or more) information pertaining to each road object - and such objects
are typically numerous within the field of view. Consequently, channel congestion
has emerged as a critical concern.

Figure 5.11 visually elucidates the aforementioned problem. In a standard
highway context, CPS was found to exert a considerable strain on channel re-
sources, driving the CBR near to 0.5 at the typical beaconing frequency of 10Hz
[3]. This burden is somewhat alleviated by the DCC’s directive for CPS to de-
crease the message rate. However, other potential solutions to mitigate this issue
encompass:

1. Modifying the message rate for a specific object if it has been referenced
frequently enough on the channel (Frequency-based Redundancy).,

2. Modifying the message rate for a specific object if the dynamic state of the
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object displays minimal variance from its previous value (Dynamics-based
Redundancy & Distance-based Redundancy),

3. Modifying the message rate for a specific object if the local estimate of the
object’s state is not superior to what has been transmitted (Confidence-based
Redundancy).

4. Modifying themessage rate for a specific object if the information increment
is stagnant (Entropy-based Redundancy).

and these are on top of the strict requirements: “The minimum time elapsed be-
tween the start of consecutive CPM generation events should be equal to or larger
than T_GenCpm. T_GenCpm is limited to𝑇𝐺𝑒𝑛𝐶𝑝𝑚𝑀𝑖𝑛 ≤ 𝑇𝐺𝑒𝑛𝐶𝑝𝑚 ≤ 𝑇𝐺𝑒𝑛𝐶𝑝𝑚𝑀𝑎𝑥 ,
where 𝑇𝐺𝑒𝑛𝐶𝑝𝑚𝑀𝑖𝑛 = 100 ms and 𝑇𝐺𝑒𝑛𝐶𝑝𝑚𝑀𝑎𝑥 = 1000 ms.”

However, simulation results have indicated a potentially severe issue with CP,
namely, its significant consumption of channel resources. Given the challenge of
increasing the allocated spectrum for ETSI ITS-G5, this issue warrants a com-
prehensive investigation into strategies aimed at further reducing message trans-
missions, thereby saving bandwidth and resources. In addition, there is a need
for advanced data compression techniques to maintain the quality of service for
numerous road participants, especially as V2X adoption continues to rise.

The following sections of this chapter, while mainly focusing on the transmis-
sion and reception of CAM, will demonstrate that the methods used for transmis-
sion rate reduction and data compression can be similarly implemented in CPM
with minimal modifications. The root of this adaptability lies in the fundamental
implementation process, which involves the application of the codec to each indi-
vidual road object encapsulated within the CPM. The Spherical Codec emerges
as a solution attempting to concurrently address both the challenge of congestion
mitigation and the requirement of data compression.

5.1.10 Related Works about Congestion Mitigation for ITS-G5

Standardization Efforts

As CAMs and DENMs are transmitted on the same privileged channel for road
safety, known as the Control Channel (CCH), the problem of channel congestion
becomes significant, especially in high vehicle-density scenarios. As the chan-
nel becomes increasingly crowded, the risk of packet loss increases, potentially
having serious safety implications. Various approaches have been proposed, and
standardization efforts have evolved since 2011, with the inclusion of cross-layer
Decentralized Congestion Control (DCC) described in the ETSI TS 102 687
standard [123].
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Figure 5.12: ETSI DCC states. Each state can only be reached by its neighboring state.

Overall, DCC comprises multiple modules and affects many different layers of
the ITS-G5 stack. In the access layer, DCC can limit the transmit power, trans-
mit rate (TPC, TRC, and TDC respectively). In particular, the transmit rate is
modified by targeting the average transmit power per packet. TRC, on the other
hand, attempts to modulate the ratio of time the node is in transmission mode
over the total operation time. Lastly, the data rate is the control signal for TDC,
which uses a queue and assigns priority to individual packets.

In the new release of TS 102 687 [123], several new concepts were introduced
in DCC, including the division of the channel status into different states corre-
sponding to the level of congestion, measured by the Channel Busy Ratio (CBR),
which is the amount of time the channel was sensed to be busy (Figure 5.12). The
busy state indication is made available to other components of the DCC, including
those located at the facility layer such as the CAM service. As a result, the CAM
generation rate can be adjusted accordingly to the CBR measure.

In another proposal, called adaptive DCC, the CBR estimate is smoothed us-
ing a moving average filter, then the parameter 𝛿 representing the amount of time
that the ITS station can occupy the channel is computed. This operational mode
borrows ideas from LIMERIC, which will be presented later. The goal of adaptive
DCC is to introduce a feedback control mechanism to maintain the CBR at a spe-
cific predefined target. Packets will be withheld at the network layer and cannot
be delivered to the access layer if the fraction of time utilization of the channel
exceeds 𝛿 .

Although DCC has addressed the problem of channel congestion to a large
extent, many researchers have identified several significant limitations associated
with very high-density traffic scenarios.

Limitations of Standardized DCC

In [124], it was demonstrated that the standardized DCC is plagued by two major
categories of drawbacks: unfairness and oscillation. Unfairness describes a scenario
where two different vehicles operating on the same channel can make disparate de-
cisions concerning the choice of transmission parameters, specifically in terms of
power and data rate. This phenomenon was investigated in [125], where a series
of experiments were conducted with each vehicle independently transmitting ran-
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Figure 5.13: With feedback mechanism, LIMERIC can use the individual message rate 𝑟𝑘 to
control the CBR to the target reference value 𝑟𝐶,𝑟𝑒 𝑓 using the error feedback 𝑒𝑟 = 𝑟𝐶 − 𝑟𝐶,𝑟𝑒 𝑓 .
The gains 𝛼, 𝛽 help the system converge, as well as stabilizing the estimate of the CBR.

dom CAMs at different moments, within a synchronized time window across all
vehicles. The study found that the width of this time window led to unfairness.
Thus, the phenomenon can be attributed to the asynchronous measurement of
the CBR, resulting in one vehicle preemptively switching to a more conservative
transmission setting to resolve the issue for both. Unfairness not only led to erratic
transmission settings but also throttled the messages more than necessary [126].

Oscillation refers to the phenomenon associated with proactive DCC design,
in which the sensed CBR is used to segregate the congestion control operation into
several discrete states. The rate control creates a dynamic equilibrium in which
the state can oscillate between less and more restrictive settings. [127] and [128]
demonstrated that the combined effects of these two phenomena could result in
detrimental impacts on the timely dissemination of crucial traffic information or
the range of safety messages. In restrictive settings, notifications may not reach
vehicles beyond their immediate neighbor.

Other Congestion Control Techniques

In this section, we only review key ideas in the development and evolution of DCC
designs described in the comprehensive review of [124]. Perhaps the most influen-
tial DCC algorithm is LIMERIC [129] (Figure 5.13), where the CBR is a target
value controlled by the adjustment of the message rate. This adjustment is achieved
through the introduction of a feedback loop and a moving average filter on CBR
estimation. Evaluations on the Inter Packet Gap (IPG) and the Tracking Error
(TE) in simulations show a remarkable improvement over ETSI’s proactive DCC.
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In [130], a simulation scenario was created in which there is a mixture of ETSI
proactive DCC vehicles and LIMERIC enabled DCC vehicles. This simulation
revealed that the former group of vehicles might experience a significant deterio-
ration in performance across all metrics. A workaround was proposed by adopting
the Channel Busy Percentage (CBP), which correlates with the vehicle density,
instead of using a fixed value of CBR.

Like ETSI DCC, the LIMERIC algorithm could potentially suffer from the
problem of unfairness. To address this issue, [131] proposed a Periodically Up-
dated Load Sensitive Adaptive Rate Control algorithm (PULSAR). The algo-
rithm, like LIMERIC, adjusts the transmission rate based on the error between
the reference CBR and the current CBR, but it introduces an additional two-hop
piggybacking mechanism to enforce collaboration between stations located within
the Carrier Sense range. The same line of thought was dedicated to designing an
extension of LIMERIC, where an additional constraint regarding the fair share of
the channel was added.

Further study of the problem revealed that the unfairness issue shares a similar
cause with the hidden terminal problem [132]. This realization motivated another
variant of LIMERIC, called cooperative LIMERIC. However, simulation results
have demonstrated negligible improvement over the Probability of Packet Recep-
tion (PPR).

Another issue that has arisen with LIMERIC is the problem of scalability.
It has been discovered that the convergence of LIMERIC is not guaranteed in
scenarios with high vehicle density. This was attributed to the rigidity of the se-
lected parameters, such as the feedback gain. This prompted the proposal of a
Self-Weighted Rate Control [133].

An alternative approach involves regulating the data rate, as opposed to the
transmission rate. In simpler terms, data rate control aims to shorten messages,
thus reducing the amount of time they occupy the channel during transmission.
The standardized CA service [119] has already proposed transmitting two ver-
sions of CAMs: one containing only essential safety information, such as position,
heading, and velocity; and a full version that is broadcast less frequently but pro-
vides more detailed information about the vehicle’s state, such as lighting status.
In [134], a DCC algorithm was proposed that uses not just the CBR, but also the
packet count number. Simulation results have shown promise, as this approach
managed to outperform LIMERIC.

In [135], a scheme calledDistributed Fair Power Adjustment for Vehicular En-
vironment (D-FPAV) was derived to adjust the broadcasting power and to intro-
duce an adaptive retransmission scheme with the goal of increasing the reachability
of important messages while keeping channel congestion under control. However,
this approach is generally considered challenging due to the rapid evolution of
network topology [124].
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Recently, improvements in machine learning have shed new light on the prob-
lem of congestion control. In [136], the authors proposed allocating more channel
resources to vehicles that have larger link weights, which are quantified based on
the number of neighboring vehicles and the quality of connections. These quanti-
ties mainly depend on the line-of-sight that the “ego” vehicle establishes with its
neighbors. Non-line-of-sight status is detected using a Support Vector Machine
(SVM). Another approach involves employing reinforcement learning for resource
allocation, the details of which can be found in [137].

5.2 DATA COMPRESSION

While DCC generally operates at a lower level and is typically insensitive to the
specific type of data being transmitted, dictating only the transmission rate, there
is a clear need for a more efficient scheme. Just as video data should be transmitted
differently than text or images, considering the nature of the data being transmitted
in ITS (primarily trajectory data) could significantly help in the design of a better
communication protocol. In the next section, we offer a brief overview of data
compression, as well as a review of compression methods for trajectory data.

5.2.1 Primer

Data compression (DC) aims to reduce the storage size needed for data or de-
crease channel utilization in the context of communication. By minimizing the
space required for data storage and streamlining transmission speed, DC lessens
the burden on storage mediums and simplifies data management.

The field of DC is well-established and robust, rooted in a rigorous mathemati-
cal foundation derived from Information Theory. For successful data compression,
there needs to be either statistical redundancy, irrelevance, or both within the data.
Essentially, raw data must exhibit some repetitive attributes, or some redundancy
that allows a portion of information to be omitted without significantly affecting
the reconstruction process. For instance, image compression is achievable because
typical photographs contain recurring patterns, such as uniformly colored objects
or distinct edges separating the elements within the scene. Irrelevance usually per-
tains to noise, a common issue with sensors. Eliminating this undesired noise
reduces the data’s size and enhances the quality of the necessary data.

Data compression techniques can be categorized using various criteria [138].
For instance, they can be classified as either lossy or lossless (Figure 5.14), depend-
ing on whether the reconstructed data exactly replicates the original signal. The
MP3 data format is an example of a lossy compression technique, which introduces
slight distortion to the original sound during playback. However, this difference
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Figure 5.14: Lossy and lossless reconstruction of the original signal (an image) after compres-
sion. Notice that in lossy compression, the quality of the signal degrades; while in lossless
compression, the quality stays the same.

or error is often too subtle for human detection. Conversely, text and spreadsheet
compression must be lossless, as any alteration in context could have significant
implications.

Various coding schemes underpin numerous data compression algorithms, in-
cluding Huffman [139], Arithmetic [140], Lempel Ziv [141], and Burrows Whee-
ler Transform [142], among others. Almost all coding schemes aim to assign
shorter codewords, which are simply binary strings, to more frequently observed
patterns. Huffman coding, the optimal prefix code, is widely used in all lossless
data compression, with numerous variations available. Each variation strives to op-
timize a different aspect of the original code, such as compression/decompression
speed or memory usage.

The scenario becomes more complex with lossy data compression, as there is
usually a need for a metric to gauge how closely the reconstructed data being sim-
ilar to the original. Numerous metrics for images and sounds have been proposed,
including 𝐿1, 𝐿2, and Total Variation. However, it remains unclear which met-
ric best aligns with human perception. Coding schemes can also be categorized
into predictive or transformative. Predictive schemes derive a predictor from a
mathematical model integrated in both the encoder and decoder, and only the
discrepancy between the model’s prediction and the actual data is encoded. Nat-
urally, the more accurately the model can predict, the less information remains
to be encoded. In contrast, transformative schemes depend on a transformation
(typically Discrete Wavelet Packets or Discrete Cosine Transform [143–145], as
with MP3, MP4, JPEG, etc.) to represent the data in a lower dimensional space.
Subsequently, the representation is quantized, and the encoding process ensues.

Given its close association with statistical inference, dimensionality reduction,
and unsupervised learning, this chapter addresses the compression problem in a
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Figure 5.15: The Douglas-Peucker approximates any curve (represented by a discrete high di-
mensional vector - in red) with a set of points such that the lines (in green) connecting these
points lie closest to the original curve.

broader context, covering both the predictive and transformative branches of the
coding scheme.

5.2.2 Trajectory Compression

Earliest attempt to solve the line generalization problem can be traced back to
the problem defined by Stone: given a continuous function 𝑔(𝑥), find the con-
stants 𝑎𝑘 , 𝑏𝑘 and the points of division 𝑢1, · · · , 𝑢𝑁−1 such that the function 𝐽 =∑∫
(𝑔(𝑥) − 𝑎𝑘 − 𝑏𝑘𝑥)2 is minimized. Bellman came up with the solution to the

problem using dynamic programming, which has a computational complexity of
𝑂 (𝑁 3) [146]. In 1973, another popular trajectory compression algorithm was pro-
posed by Douglas and Peucker [147]. The idea was to start from the first and last
points of the trajectory in the set. Then, gradually, one point at a time is added
to the set, resulting in an increasing number of segments so that the trajectory
is “closest” to the original trajectory in a perpendicular sense (Figure 5.15). How-
ever, these techniques do not consider the temporal dimension; thus, Meratnia and
Rolf [148] introduced another algorithm using an “opening window” to enclose as
many points of the original trajectory as possible. The spatial distance metric was
replaced with Synchronized Euclidean Distance (SED) to account for the tempo-
ral dimension. Another approach was to use dead reckoning from velocity [149].
The algorithm had lower complexity of 𝑂 (𝑛) and was capable of online compres-
sion. In [150], a priority queue was introduced to optimize the SED metric locally
by dropping points with the lowest SED when the buffer is full. Due to the limited
points being taken into account in each optimization attempt, the algorithm has
lower complexity of𝑂 (log𝑛). The method was extended in [151] to allow control
of both the compression ratio 𝜆 and the error 𝜖. These approaches’ drawback is that
they work best with trajectories close to linear. However, real-world trajectories
are often smooth curves, depending on road topology and multiple other factors;
hence, line generalization often incurs a large error to reach a target compression
ratio.

Another class of compression algorithms for trajectories is called delta compres-
sion. A predictor is usually used to extrapolate from the current point, and only



5.2. Data Compression 104

Snapshots of Vehicle Trajectory

V2x Messages

MSG Generation Rate 
Regulation by DCC

Data Compression

V2x MessagesV2X Messages

Transmission

Figure 5.16: Usual approach found in the literature to reduce channel utilization of trajectory
information transmission.

the difference against the extrapolated value is encoded. The difference is zero for
linear trajectories, and for general trajectories, the difference should be close to
zero. This number is encoded by a leading zero encoding scheme and can be lossy
or lossless. Two influential papers in this category include TrajStore [152] and Tra-
jic [153]. Unlike the line generalization class, delta compression usually achieves
a better compression ratio at the same error tolerance level. The performance of
delta compression depends strongly on the predictor, with various linear predic-
tors proposed: [152] used a constant predictor, [153] used a temporally-aware lin-
ear predictor to account for different sampling rates. Nonlinear predictors such as
splines [154] have also been studied, but computational complexity is often higher
than linear class ones.

In [155], the authors conducted a series of experiments to study the effect of
compression on CAMs, CPMs, and CMMs. Entropy coding with the Shannon-
Fano algorithm on 12-bit symbols reduced the message size to 25% on average for
all types and 50% for CPMs in particular. Adaptive Dictionary methods such as
GZIP had an adversary effect on the message size. It was also found that Channel
Busy Ratio (CBR) also improved by activating compression, and so was Packet
Delivery Ratio (PDR). However, the algorithms presented attempted to compress
standard V2X messages rather than the trajectory data. Thus, the predictability of
trajectory was overlooked. Because compression took place on the Facility Layer,
the compression had little effect on the header size.

A thorough literature review on the functioning of congestion control mech-
anisms and trajectory compression reveals that these two concepts seemingly ad-
dress the same problem, but from distinct perspectives (Figure 5.16). This is in-
teresting considering that they share a common mathematical framework as their
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Figure 5.17: The new approach proposed in this dissertation serves a dual function. The pre-
dictive compression scheme also controls congestion. Information is only required to be re-
transmitted if the deviation from the prediction is significant.

base. However, it is important to note that while statistical redundancies within
the message content can be eliminated with a data compression algorithm, as out-
lined in [155], the substantial redundancy inherent in trajectory data itself has not
been effectively exploited.

Specifically, the strong correlation among various variables characterizing the
trajectory – such as position, speed, and heading values at neighboring time steps –
hasn’t been sufficiently leveraged. Current V2X messages only deliver a “snapshot”
of the available information for transmission at any given moment, and the receiv-
ing end doesn’t take further steps to decrease the workload on the transmitting
end. This disparity underscores the substantial gap between these two approaches.
This chapter seeks to bridge this gap by introducing two novel codecs that func-
tion both as congestion controllers and data compressors, thereby brings about the
convergence of congestion control and data compression.
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5.3 INTRODUCTION TO SPHERICAL CODEC

To our knowledge, the Spherical Codec presented this chapter is the first attempt
to design a data compression algorithm that explicitly exploits the fact that trajec-
tories inherently lie in a low-dimensional subspace to target both the compression
and redundancy mitigation problems at the same time. We also join [155] in dis-
cussing the potential benefits of applying compression techniques to V2Xmessages
in general. The rest of the chapter is organized as follows: we describe the Spher-
ical Codec in detail in Section 5.4 and give two numerical simulations in Section
5.5, one illustrates the codec’s characteristics and the other studies the impact on
the ITS-G5 V2X channel. We discuss some avenues for implementations and
optimizations in future work in Section 5.6 and conclude the chapter in Section
5.7.

5.4 INFERENCE AND SPHERICAL CODEC

5.4.1 Overview of the Codec

All effective compression schemes must exploit some statistical redundancy in the
data. In the particular case of trajectories, there typically exhibits a predictable
feature since moving road vehicles must be constrained under physical laws such
as inertia. As a result, we can split the data into two parts, one being “predictable”
and the remaining being “unpredictable.” The message recipients can readily pre-
dict the former, and only the “unpredictable” part needs to be transmitted. This
explains why delta compression is much more effective than other techniques since
it only encodes the “unpredictable” part of the data. The Spherical Code’s starting
point is from building an effective “predictor” on a reduced dimensional domain,
which trades accuracy for a lower number of dimensions. Because estimates from
the predictor converges in time: a𝑛

𝑛→∞−−−−→ a, it follows that a𝑛+1 − a𝑛
𝑛→∞−−−−→ 0.

This property can be used to design a messaging scheme such that the broadcast-
ing frequency and the message sizes reduce over time. At a glance, the algorithm
comprises two major components:

1. An inference module that continuously refines the posterior distribution of
prediction 𝑝 (𝑥𝑛, 𝑥𝑛+1, . . . |𝑥1, 𝑥2, . . . , 𝑥𝑛−1) based on past observations up to
the current moment.

2. A delta compression scheme that only encodes the change in the representa-
tion Δ𝜃𝑛 that corrects the message recipients’ prediction within a predefined
error tolerance.

Because a large header is included in each V2X message, the best compres-
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sion is achieved when no data is transmitted. In the Spherical Codec, no further
communications will be made if the road object’s trajectory does not deviate much
from what the message recipients can predict accurately. If the transmitter ob-
serves a deviation that the clients should know about, it will transmit the change
of 𝜃𝑛 (called Δ𝜃𝑛) to the recipient. Intuitively, the scheme works best if the initial
choice of 𝜃1 matches the trajectory that the vehicle will travel in the future, which
is likely if we choose the prior distribution 𝑝𝜃1 carefully enough.

5.4.2 Trajectory Completion

Functional decomposition. For a detailed discussion about trajectory completion,
please see section 3.4.3. In what follows, we letD be the set of vehicle trajectories:

D = {x ∈ R∞}

Onemay also approximate the trajectories with cubic cardinal splines {𝐵𝑖,4(𝑡), 𝑖 ∈
{1, 2, . . . , 𝑛𝑏}} as basis functions with 𝑛𝑏 control points {𝑎𝑖}:

𝑥 (𝑡) =
𝑖=𝑛𝑏∑
𝑖=1

𝑎𝑖𝐵𝑖,4(𝑡) (5.1)

Efficient algorithms to construct {𝐵𝑖,4} exist, such as [156]. The number of
basis functions 𝑛𝑏 was selected so that:

𝜖D = Ex∼D [max
𝑡
|𝑥 (𝑡) − 𝑥 (𝑡) |] < 𝐸𝑎 (5.2)

where 𝐸𝑎 is some predefined tolerance error for approximation. Then, for each
x ∈ D, we can calculate its corresponding control a = {𝑎𝑖, 𝑖 ∈ {1, 2, . . . , 𝑛𝑏}}
points following [157]. The process above could be done in a discrete domain.
Hence, Equation (5.1) can be rewritten as:

𝑥 [𝑘] =
𝑖=𝑛𝑏∑
𝑖=1

𝑎𝑖𝜙𝑖 [𝑘] (5.3)

This equation can be leveraged for an inference process, since it is in a linear
form of a and the basis functional vector 𝜙 [·] = [𝜙𝑖 [𝑘]]⊺𝑖 :

𝑥 [𝑘] = a⊺𝜙 [·] (5.4)

Instead of working on the time domain, we will perform inference on the rep-
resentation domain - that is, we are interested in the distribution of the represen-
tation coefficients 𝑝 (𝑎) rather than 𝑝 (𝑥𝑛). The reason is that the representation
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vector a usually has a much smaller number of dimensions than x, making infer-
ence on this domain much more efficient.

We can use any distribution fitting technique to find the prior distribution
𝑝 (𝑎) from D. To be as general as possible, we may perform a Kernel Density
Estimation (KDE) to learn 𝑝 (𝑎):

𝑝 (𝑎) = 1
𝑁ℎ

𝑁∑
𝑖=1

𝐾
(𝑎 − 𝑎𝑖

ℎ

)
(5.5)

where K is the Epanechnikov kernel function, the bandwidth ℎ is obtained from
leave-one-out cross-validation. However, if the trajectories are close to realizations
of the Gaussian Process, we can approximate 𝑝 (𝑎) by N(𝜇𝑎, Σ𝑎). In this particu-
lar case, a simple analytical method exists to calculate the maximum-a-posteriori
estimate of the representation vector.

Bayesian inference based on Sequential Importance Resampling (SIR). Given
𝑝 (𝑎) in the form of (5.5), inference could be difficult. Using Bayes formula:

𝑝 (𝑎 |𝑥1:𝑛) = 𝑝 (𝑎 |𝑥1, 𝑥2, . . . , 𝑥𝑛)

=
𝑝 (𝑥1:𝑛 |𝑎)𝑝 (𝑎)∫

𝑎′
𝑝 (𝑥1:𝑛 |𝑎′)𝑝 (𝑎′)𝑑𝑎′

(5.6)

If we use an empirical approximation of 𝑝 (𝑎)𝑑𝑎 as 𝑀 →∞:

𝑝 (𝑎 |𝑥1:𝑛) '
𝑝 (𝑥1:𝑛 |𝑎)

𝑀∑
𝑗=1
𝛿 (𝑑𝑎 − 𝑎 𝑗 )∫

𝑎′
𝑝 (𝑥1:𝑛 |𝑎′)𝑝 (𝑎′)𝑑𝑎′

=
𝑀∑
𝑗=1

𝑝 (𝑥1:𝑛 |𝑎 𝑗 )
𝑀∑
𝑗=1
𝑝 (𝑥1:𝑛 |𝑎 𝑗 )

𝛿 (𝑑𝑎 − 𝑎 𝑗 )
(5.7)

This is an equivalent form of a Boostrap Particle Filter, with no state dynamics
for 𝑎. In particular, we represent the posterior 𝑝 (𝑎 |𝑥1:𝑛) by {(𝑎𝑖,𝑛,𝑤𝑖,𝑛), 1 ≤ 𝑖 ≤
𝑀, 1 ≤ 𝑛 ≤ 𝑁 } where 𝑤𝑖,𝑛 is the weight for the particle 𝑎𝑖,𝑛 at time 𝑛. Instead of
sampling from 𝑝 (𝑎 |𝑥1:𝑛), we can sample from a proposal distribution 𝜋 (𝑎):

𝑝 (𝑎 |𝑥1:𝑛) ≈
𝑀∑
𝑖=1

𝑤𝑖,𝑛𝛿 (𝑎 − 𝑎𝑖,𝑛) (5.8)

where the weight:
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𝑤𝑖,𝑛 ∝
𝑝 (𝑥1:𝑛 |𝑎)𝑝 (𝑎)

𝜋 (𝑎) (5.9)

we note that if we choose the proposal distribution 𝜋 (𝑎) to be 𝑝 (𝑎), we have a
recursive formula:

𝑤𝑖,𝑛 ∝ 𝑝 (𝑥1:𝑛 |𝑎) = 𝑝 (𝑥1:𝑛−1 |𝑎)𝑝 (𝑥𝑛 |𝑎) ∝ 𝑤𝑖,𝑛−1𝑝 (𝑥𝑛 |𝑎) (5.10)

This is the same form as (5.7). The weights are normalized at the end of each
iteration. However, due to the increased variance of the estimate, resampling is
required every once in a while. In implementation, we used adaptive resampling
where we perform resample of 𝑥𝑖,𝑛 when the effective number of samples 𝑛𝑒 𝑓 𝑓 =∑𝑀
𝑖=1(𝑤𝑖,𝑛)−2 is too small.
The particle filter undoubtedly will require heavy use of the available compu-

tational resource. However, in practice, there should be very little need to re-
implement this filter because necessary inputs are already available from other
applications such as radar filtering, tracking [158] or anomalous detection algo-
rithms [159]. The maximum-a-posteriori (MAP) estimate of 𝑝 (𝑎 |𝑥1:𝑛) is the par-
ticle with the highest weight before resampling. The MAP coincides with the
mean when no observation is received and will be sequentially refined as observa-
tions arrive.

Inference over Gaussian prior of representations. In the particular case that a
multivariateGaussian distribution can approximate 𝑝 (𝑎), themaximum-a-posteriori
estimate can be analytically calculated similarly to [159]. We outlined the algo-
rithm in Algorithm 3.1.

5.4.3 Delta Communications

Following the discussion in Section 2.3, functional decomposition has provided
a way to represent a (high-dimensional) vehicle trajectory using a compact, low-
dimensional representation vector. While this effectively compresses the whole
trajectory, there remains a question of how to do compression in real-time, as the
data required is only available in the future. We propose a combined inference
scheme that is intuitively similar to betting. In particular, we use some “money”
(message bits to be transmitted) to bet on a particular value of 𝑎 - the represen-
tation of the whole trajectory. If the vehicle we observe in the future turns out
to have its trajectory KLT transformed to 𝑎, we “win” much money (saving many
re-transmissions). If our initial 𝑎 is not good enough, we will rebroadcast Δ𝑎 so
that our recipients can correct their value of 𝑎.

Quantization of the functional domain. To introduce the reconstruction error
tolerance, we define a (𝑛𝑏 − 1)-sphere with diameter 𝑙 such that any two points
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within the same sphere, when inverse transformed to the time domain, will have
a bounded maximal error. In particular, we choose 𝑙 such that:

max
𝑘
| | (𝑎1 − 𝑎2)⊺𝜙 [𝑘] | |2 ≤ 𝐸𝑞 (5.11)

where 𝐸𝑞 is the quantization error tolerance we choose. For orthonormal basis
𝜙 [𝑘] like cubic B-splines or KLT, 𝑙 = 𝐸𝑞. We also denote the transmitting vehicle
as Alice’s and the receiving vehicle as Bob’s. For the sake of simplicity, we assume
that there is no packet loss and because Alice is broadcasting, Alice certainly knows
the exact information that Bob receives.

Alice runs the inference module introduced from the previous section to es-
timate, from her own trajectory 𝑥1:𝑛, what would likely be best value of 𝑎 (the
maximum-a-posteriori estimate) that represents her complete trajectory 𝑥1:𝑁 =
{𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥𝑁 } that she will complete in the future:

𝑎[𝑛] = argmax
𝑎
𝑝 (𝑎 |𝑥1:𝑛) (5.12)

Deriving theDeltaMessage. Because Alice knows Bob’s estimate 𝑏 of the repre-
sentation of her trajectory, she can perform an inverse Karhunen-Loève transform
from his estimate 𝑏 to yield Bob’s belief of her trajectory 𝑦 [𝑘]:

𝑦 [𝑘] =
𝑛𝑏∑
𝑙=1

𝑏𝑘𝜙𝑙 [𝑘] (5.13)

Re-transmission is necessary if Alice’s trajectory deviates an amount of 𝐸𝑑 from
Bob’s belief, that is:

TRANSMIT =

{
0 if |𝑦 [𝑘] − 𝑥 [𝑘] | < 𝐸𝑑

1 if |𝑦 [𝑘] − 𝑥 [𝑘] | ≥ 𝐸𝑑
(5.14)

We define the Delta Vector:

𝛿𝑛 = 𝑎[𝑛] − 𝑏 (5.15)

The goal is to encode 𝛿𝑛 so that our recipients can reconstruct 𝑎𝑛 from 𝛿𝑛 and 𝑏
with the accuracy given by (5.11). The first step of the spherical code is to convert
𝛿 into spherical coordinates. One choice is:
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𝑟 = | |𝛿 | |2

𝜙1 = arccos
𝛿1√

𝛿21 + . . . + 𝛿2𝑛

𝜙2 = arccos
𝛿2√

𝛿22 + . . . + 𝛿2𝑛
. . .

𝜙𝑛 =


arccos 𝛿𝑛√

𝛿2𝑛−1+𝛿2𝑛
, 𝛿𝑛 ≥ 0

2𝜋 − arccos 𝛿𝑛√
𝛿2𝑛−1+𝛿2𝑛

, 𝛿𝑛 < 0

Quantization of the radius 𝑟 is straightforward:

𝑟𝑞 = b𝑟/𝑙c
We define the number of angular lattices as 𝑁𝑙 (𝜌) as:

𝑁𝑙 (𝜌) = b
2𝜋𝜌

𝑙
c + 1 (5.16)

then each angular lattice will encompass a segment less than 𝑙 of a circle whose
radius is 𝜌. In other words, if we quantize the angle 𝜙𝑖 as

𝜙𝑞,𝑖 = b
2𝜋𝑟𝑞
𝑁𝑙

𝜙𝑖c = b
𝜙𝑙

𝑟𝑞
c (5.17)

then the point (𝑟𝑞, 𝜙𝑖,𝑞) ∈ B𝐸𝑞 (𝑟, 𝜙𝑖) (see Fig. 5.18), then by (5.11), the quantiza-
tion process does not induce an error larger than 𝐸𝑞.

Entropy of the Delta message. The number of bit required for coding is related
to the entropy of 𝑟𝑞 and 𝜙𝑞,𝑖 :

𝐻 ≈ log2 𝑟𝑞 + log2 𝑁𝑙 (𝑟𝑞) ≈ 2 log2 𝑟𝑞 − log2 𝑙 + 𝑐𝑜𝑛𝑠𝑡 (5.18)

It is obvious from (5.18) that the maximum limit of message size depends
greatly on 𝑟𝑞, hence the expression explains why delta compression is so effective
for trajectory data. As the MAP estimate converges towards 𝑎∗, 𝑟𝑞 → 0. In other
words, the payload size and the number of re-transmissions will decay with time.
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Figure 5.18: Illustration of the quantization process for Delta Message derivation in R2. Each
small quantization sphere (yellow) has the diameter of 𝑙 . Alice’s quantized MAP (QMAP) is
determined by 𝑟𝑞 × 𝑙 , and stays within the same quantization sphere as Alice’s original MAP.

5.5 IMPLEMENTATION AND NUMERICAL SIMULATIONS

So far, we have only described the “core features” of the Spherical Codec. The
current design has yet to address the issue that new recipients that just come into
transmit range or those that miss just one of the Delta messages, will be unable
to decode the correct trajectory of the transmitting vehicles. To help remedy the
problem, we introduce one particular codec implementation in this section, but
many other different implementations are possible.

It is also important to stress beforehand that despite our attempt to compare
the spherical codec with the conventional CA here, the results should not be in-
terpreted as for justification of competition or replacement of the already imple-
mented technology. This is due to the fact that the two are very different in mech-
anism. We envision that the spherical codec would only help in the special cases
of congestion for which only position information is required.

5.5.1 Compression and Mitigation Characteristics

In this simulation, we set out to study the “core performance” of the Spherical
Codec, reflected through the frequency of rebroadcasts and message entropy as
calculated in (5.18). 200 vehicle trajectories in NGSIM dataset captured from
8:00 to 8:15 on the US-101 highway through the state of California are visualized
in Fig. 5.19. We choose 𝑛𝑏 = 5 basis components to achieve an approximation
tolerance error of 𝐸𝑎 = 1𝑓 𝑡 and quantization tolerance 𝐸𝑞 = 3ft for the represen-
tation tolerance error. Conversion into B-spline basis results in a set of vectors of
R5 whose 3 first components were visualized in Fig. 5.20.

The SIR process introduced in Section 5.4.2 on a test trajectory, is shown in
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Figure 5.19: Roadwise coordinate graph of 200 vehicles from the NGSIM-101 dataset.

Component 1

6 4 2 0 2 4 Com
po

ne
nt 

2

20
40

60
80

100

Co
m

po
ne

nt
 3

0
50
100
150
200
250
300
350

Figure 5.20: First three components of the functional domainA .

Fig. 5.21. In the beginning, with no observations, the MAP estimate is at the
mean of 𝑝 (𝑎). The estimate gets better with time and eventually converges to
the true (latent) representation vector 𝑎 that generated this trajectory after 10𝑠 of
observations.

However, with the tolerance of 3ft of error, it is only necessary to perform a
total of 10 transmissions. The values are shown as individual dots in Fig. 5.22.
Compared to sending 140 messages individually, we have already achieved im-
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Figure 5.21: SIR to infer the five components of the representation vector𝑎 for a series of obser-
vations from a test trajectory. Note the convergence of the components of the representation
vector with respect to time.

pressive broadcast saves. The reconstructed trajectory by message recipients and
the error compared to the ground-truth trajectory is shown in Fig. 5.23, which
confirms our design of restricting the deviation error between predicted and actual
coordinates to be less than 3ft.

5.5.2 Spherix: the Gaussian prior based implementation of the Spherical Codec

To integrate the Spherical Codec into the current ETSI ITS-G5 Cooperative
Awareness Service [160], we implemented a reference library for the Artery frame-
work [161], an OMNET++ based discrete event simulation framework for ETSI
ITS-G5 V2X, including an inference module based on Algorithm 4.1, along with
the message encoder and decoder. The library is standalone, which means that
possible integration into other simulation framework can be considered.

To address the problem ofmissing just one delta broadcast leading to the inabil-
ity to decode the entire trajectory, we introduce two other messages: the SHOUT
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Figure 5.22: Representation values broadcast in subsequent messages, with error tolerance
3ft.
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Figure 5.23: Reconstruction of the trajectory by message recipients, and absolute difference
with ground-truth trajectory.

and the CAMLITE message formats. The SHOUT message periodically repeats the
current estimate 𝑎[𝑛] to all the recipients so that new recipients can begin predict-
ing the transmitting vehicle’s trajectory and announces the presence or disappear-
ance of the vehicle so that recipients’ local perception can be updated accordingly.
Finally, the CAMLITE message is a dialled-down version of the current CA mes-
sage [160], with many fields filled in with a default value. We also propose a “fall-
back mechanism” based on Algorithm 5.1, that automatically switches back to the
conventional real-time CAM broadcasts if the prediction from the inference mod-
ule consecutively churns out inaccurate estimates of 𝑎. This may happen due to
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the transmitting vehicle’s exotic trajectory, which is a kind of trajectory rarely seen
on the dataset. Continuing broadcasting in the Spherical Codec could potentially
lead to an even higher channel utilization than the conventional way.

Algorithm 5.1: Dynamic Switching between Spherical CA Service and Legacy CA Ser-
vice

Require: 𝑛𝑡 : transmitted Deltas, 𝑛𝑠 : saved messages, 𝑡𝑑 : time between switching
attempts, 𝜏𝑠 : message rate tolerance to enter Spherical CA Service, 𝜏𝑡 : message
saving rate threshold for Spherical CA Service.

Ensure: 𝑆 : switching decision variable: 𝑆 = 2 if Legacy CA Service is used, 𝑆 = 1
is Spherical CA Service is used
for every 𝑡𝑑 time do

if |𝑦 [𝑘] − 𝑥 [𝑘] | < 𝐸𝑑 then
𝑛𝑠 ← 𝑛𝑠 + 1

else
𝑛𝑡 ← 𝑛𝑡 + 1

end if
if 𝑛𝑡/𝑡𝑑 > 𝜏𝑡 and 𝑆 = 1 then

𝑆 ← 2
𝑛𝑠 ← 0

else if 𝑛𝑠/𝑡𝑑 > 𝜏𝑠 and 𝑆 = 2 then
𝑆 ← 1
𝑛𝑡 ← 0

end if
end for

5.5.3 Highway Simulation with Spherical Codec on the Artery Framework

We consider a simulation using SUMO [162] about a highway section whose
length is 500m that consists of 5 lanes. All vehicles on the road were equipped with
ITS-G5V2X, and only the Cooperative Awareness Service was active. All stations
were configured to transmit at 200mW power on the 5.9 GHz band. In three sce-
narios, traffic density casually built up from 0 vehicle to a maximum value of 140,
200, 250, 320 and 380 vehicles respectively with an average speed of 55km/h. We
particularly chose this traffic scenario to achieve the desired traffic densities while
the vehicle dynamics were not changing too quickly. For the Codec, the SHOUT
interval was set to 3s, with switching parameters 𝜏𝑠 = 𝜏𝑛 = 0.01. We also used
Nakagami’s model [163] for both cases to simulate the channel fading.

Table 5.1 shows the key performance difference between the CA service based
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Table 5.1: Key Performance Metrics for each vehicle.

Vehicle
Density 140 200 250 320 380

Codec OFF ON OFF ON OFF ON OFF ON OFF ON
Packets Sent 162 33 126 34 113 34 103 34 87 33
Bytes Sent 65 579 12 780 50 647 13 051 45 067 12 374 41 668 13 218 35 215 12 441
Packets
Received 11 588 2 339 14 048 3 626 16 758 5 294 19 485 7 155 20 366 8 054

Max Bytes
Received 4 659 079 858 949 5 650 559 1 347 144 6 743 476 1 937 774 7 843 798 2 634 315 8 201 731 2 944 864

Channel Load 0.2221 0.0394 0.2590 0.0610 0.2762 0.0780 0.3281 0.1075 0.3626 0.1279

on Spherical Codec and the current implementation across different vehicle den-
sity values. As traffic built up, the Decentralized Congestion Control (DCC) re-
duced the interval between CAM messages (Fig. 5.24), leading to a reduction in
the number of packets sent at each station. With spherical codec, however, the
vehicle’s position was provided at the nominal frequency of 10Hz for all values of
vehicle densities. It is obvious fromFig. 5.25 that the spherical codec helped signif-
icantly reduce the number of packets exchanged between stations and the channel
load while ensuring the approximation error stays bounded by a predefined value.
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Figure 5.24: The CAM broadcasting frequency was regulated by the DCC.

5.6 DISCUSSION

The name “spherical codec” stems from the fact that codewords are assigned to
the parts of the volumetric n-sphere. Thanks to a different compression mecha-
nism, Spherical Codec could work with conventional data compression methods,
such as those proposed in [155] for a better compression ratio. However, it is also
important to stress that this nature of the codec also opens a wide avenue for differ-
ent implementations, and further optimization could yield even better results. For
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Figure 5.25: Visualization of key performance metrics from the simulation. Spherical Codec
helped reduce the channel load and the number of bytes broadcast and received by all stations.
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instance, the codec’s parameters are currently selected through a trial-and-error
process, and an adaptation mechanism could have significant impacts. Ideally, the
SHOUT rebroadcasting frequency should depend on how regularly vehicles appear
and disappear from the transmission horizon. Road scenarios could also be es-
sential to choose the switching threshold 𝜏(·) . It was demonstrated in [164] that
highway scenarios involving traffic with fast-changing dynamics are ideal situa-
tions to use Spherical Codec. In this way, the conventional and new methods
complement each other rather than competing and replacing one another. Finally,
we are aware that CA messages deliver not only the vehicle’s trajectory but also
additional information about the vehicle’s state, such as lighting and status. Nev-
ertheless, that information is usually packed in a container that is broadcast at
long intervals. Hence, the SHOUT messages, perhaps, could carry this information
along.

The Spherical Codec’s current design will work with any time series data in
general and does not account for information related to the first and higher order
derivatives. However, it is believed that for vehicle trajectories, the velocity (first-
order derivative) also contains a lot of statistical redundancy that has not been
exploited in this design so a more effective communication scheme could be possi-
ble. This is an almost obvious fact by observing that vehicles traveling on highway
rarely changes velocity and is currently under study as future work.

5.7 CONCLUSION

In this chapter, we have presented a novel data compression technique that specif-
ically targets the V2X Cooperative Awareness Messages. The algorithm exploits
the inherent low-dimensional nature of trajectories to combine inference and cod-
ing to “compress and mitigate redundancy”. Numerical simulations have shown a
significant gain in all performance metrics, with open avenues to further develop
and extend the codec to other aspects of the current V2X standards.
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6
Solving the Optimal Retransmission Pro-
blemwithLinearExtrapolationoverMean
Subtracted Residual

Abstract
In this chapter, we present a theoretical study of the trajectory data transmis-

sion redundancy mitigation problem (OTD-TP), framing it within a mathemat-
ical model. The Random Impulses models, outlined in Chapter 3, serve as the
foundation upon which we prove optimality results relating to the solution for the
minimum expected time until retransmission. We demonstrate that the solution
to this problem suggests the design of an optimal message rate control algorithm.
We also provide bounds regarding the expected stopping time.
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6.1 THE OPTIMAL TRAJECTORY DATA TRANSMISSION PROBLEM (OTD-TP)

6.1.1 Background
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Figure 6.1: The conventional way of transmitting trajectory data: data is continuously sent
over the channel at periodic intervals. The recipient may need to interpolate between data
points, but this is usually not necessary.

In the usual data transmission scheme, the transmitter continuously beacon
the trajectory data to the recipient. The recipient does not need to perform any
complicated trajectory prediction task (Figure 6.1).

In the Silent Inference scheme introduced in Chapter 5, however, the trans-
mitter will not beacon its trajectory information all the time, but will only transmit
a message with enough information, then stays silent on the channel. The recipient
will make efforts in predicting the trajectory information during the silent periods,
based on the last message it received. Since the prediction methodology is also
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Figure 6.2: In the silent inference scheme, the recipient will have tomake efforts predicting the
trajectory when the transmitter is not transmitting (i.e, during silent periods). The transmitter
also performs the same prediction task as the recipient to check if the recipient’s prediction
is correct or not. If it deviates more than some threshold value, the transmitter will transmit
another message.

known to the transmitter, the transmitter can anticipate when the recipient’s pre-
diction fails (i.e., deviating significantly enough from the reality), and transmits
another message and stays silent (Figure 6.2). The time between subsequent trans-
mission attempts of the transmitter is called expected time between retransmissions.

6.1.2 Motivation

The goal of this chapter is to answer the following two questions:

1. In the inference scheme, which data should be exchanged to maximize the
expected time between retransmissions? In other words, does one suppose
to include the position, the velocity, the acceleration, or a transformed rep-
resentation vector like the Spherical Codec?

2. Can we get the expected time between retransmissions? Or at least, can we
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give a lower bound of it in the worst case scenario if that’s too difficult?

6.1.3 Problem Statement

Define a probability space (Ω, F , 𝑃) and a measurable space (R,B) where B de-
notes the Borel sigma algebra. Denote the continuous time index set as 𝑇 = R+,
we assume that each individual vehicle trajectory is an independent path sample
𝑋 (𝑡, ·) of the stochastic process:

𝑋 (𝑡, 𝜔) : (𝑇 × Ω) → R, (6.1)

and that 𝑋 (𝑡, 𝜔) is B-measurable.
From some deterministically given time 𝑡0 ≥ 0, define 𝑋𝑡 the deterministic

prediction of 𝑋𝑡 at time 𝑡 > 𝑡0. We call the discrepancy between the prediction 𝑋𝑡
and the actual value of 𝑋𝑡 the residual :

𝑅𝑡 = 𝑋𝑡 − 𝑋𝑡 , 𝑡 ≥ 𝑡0, (6.2)

and that the retransmission event 𝐴𝑡 will happen when the trajectory residual ex-
ceeding some predefined threshold value 𝛿 :

𝐴𝑡 = {𝜔 ∈ Ω : |𝑅(𝑡) | ≥ 𝛿}, 𝑡 ≥ 𝑡0. (6.3)

Let (Ω, F , F𝑡 , 𝑃) be the filtered probability space where F𝑡 is the natural filtra-
tion. Then, the random variable 𝑇 , defined as:

𝑇 = inf{𝑡 ∈ R+ : |𝑅(𝑡) | ≥ 𝛿} (6.4)

is a stopping time. Obviously, {𝜔 ∈ Ω : 𝑇 ≤ 𝑡} = {𝜔 ∈ Ω : sup𝑡 ′≤𝑡 |𝑅(𝑡 ′) | ≥ 𝛿} is
F𝑡-measurable. To see this, note that:

{sup
𝑡 ′≤𝑡
|𝑅(𝑡 ′) | ≥ 𝛿} = ∪𝑠∈Q,0≤𝑠≤𝑡 {|𝑅(𝑠) | ≥ 𝛿}, (6.5)

and that {|𝑅(𝑠) | ≥ 𝛿} ∈ F𝑡 if 𝜎 (𝑋𝑡 ) ⊂ F𝑡 . To avoid infinity, we also define a
sequence of bounded stopping times:

𝑇𝑛 = 𝑇 ∧ 𝑛, 𝑛 ∈ N+ (6.6)

The goal of OTD-TP is to solve for the optimal estimate:
𝑋𝑡 = 𝜙 (𝑡, 𝑋𝑡0) (6.7)

such that 𝑋𝑡 maximizes the expected time until retransmission:

lim
𝑛→∞
E[𝑇𝑛] =

+∞∑
𝑛=1

𝑛𝑃 [{𝑇 = 𝑛}] . (6.8)

Obviously by definition, 𝜎 (𝑋𝑡 ) ⊂ F0 ⊂ F𝑡 which satisfies the condition for 𝑇
to be a stopping time.
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6.2 THE LONGITUDINAL OTD-TP (LOTD-TP)

TheRandom ImpulsesModels introduced inChapter 3 assumed the independence
between lateral and longitudinal components. If the RAIM model (3.3) is used in
(6.1), we obtain the LOTD-TP.

Let ρ = {𝜌0, 𝜌1, . . . } be the set of regeneration points from 1 to 0 of the accel-
eration activity process L𝑡 defined in (3.4), then we can extract from 𝑋𝑡 at 𝑡 ∈ ρ a
discrete stochastic process 𝑋𝜌𝑘 . Then, the associated 𝐴𝜌𝑘 given by (3.5) is Markov,
since the k-th acceleration impulse𝐴𝑘 = 𝑓 (𝜔2𝑘+1−𝜔2𝑘 , 𝑀𝑘) where𝜔2𝑘+1−𝜔2𝑘 = 𝐼1,𝑘
and 𝑀𝑘 are assumed to be independent samples from the respective distributions.

We define an auxiliary variable:

𝑓𝑘 =
𝜔2𝑘+1 − 𝜔2𝑘

𝜔2𝑘+2 − 𝜔2𝑘
, (6.9)

which indicates the proportion of time the process spends in L𝑡 = 1 between
two consecutive regenerations from 1 to 0. Consequently, 𝑓𝑘 is also independently
identically distributed, and independent from 𝐼1,𝑘 . We also define:

�̃�𝑡 = 𝑋𝑡 − 𝜇𝑥,𝑡 , (6.10)

the residual of 𝑋𝑡 when subtracted the mean trajectory E[𝑋𝑡 ] in (3.2). Likewise,
the residual velocity is defined as:

𝑣𝑡 =
d
d𝑡
(𝑋𝑡 − E[𝑋𝑡 ]) . (6.11)

Lemma 6.1. Given the velocity longitudinal position at time 𝜌0 being 𝑣𝜌0 and 𝑋𝜌0
respectively, the position and velocity at time 𝜌𝑛 can be written as:

�̃�𝜌𝑛 = �̃�𝜌0 + 𝑣𝜌0 (𝜌𝑛 − 𝜌0)

+
𝑛−2∑
𝑘=0

𝑀𝑘 (𝜌𝑘+1 − 𝜌𝑘) 𝑓𝑘 (𝜌𝑛 − 𝜌𝑘+1)

+ 1
2

𝑛−1∑
𝑘=0

𝑀𝑘 𝑓
2
𝑘 (𝜌𝑘+1 − 𝜌𝑘)

2, (6.12)

and:

𝑣𝜌𝑛 = 𝑣𝜌0 +
𝑛−1∑
𝑘=0

𝑀𝑘 𝑓𝑘 (𝜌𝑘+1 − 𝜌𝑘) (6.13)

Proof. The base case for 𝑛 = 2 is trivial. Suppose that (6.12) and (6.13) hold for 𝑛.
We will show that the expressions hold for 𝑛 + 1.



6.2. The Longitudinal OTD-TP (LOTD-TP) 125

By the RAIM model, we have:

𝑣𝜌𝑛+1 = 𝑣𝜌𝑛 +
∫ 𝜌𝑛+1

𝜌𝑛

𝐴𝑠d𝑠 (6.14)

From (3.5), notice that:

𝐴𝑠 =

{
𝑀𝑛 ∼ 𝐹𝑎 (·), 𝜌𝑛 ≤ 𝑠 ≤ 𝜌𝑛 + 𝑓𝑛 (𝜌𝑛+1 − 𝜌𝑛)
0, otherwise.

Hence, (6.14) becomes:

𝑣𝜌𝑛+1 = 𝑣𝜌𝑛 +
∫ 𝜌𝑛+𝑓𝑛 (𝜌𝑛+1−𝜌𝑛)

𝜌𝑛

𝑀𝑛d𝑠 = 𝑣𝜌𝑛 +𝑀𝑛 𝑓𝑛 (𝜌𝑛+1 − 𝜌𝑛)

= 𝑣𝜌0 +
𝑛∑
𝑘=0

𝑀𝑘 𝑓𝑘 (𝜌𝑘+1 − 𝜌𝑘).

Moving onto �̃�𝜌𝑛 :

�̃�𝜌𝑛+1 = �̃�𝜌𝑛 +
∫ 𝜌𝑛+1

𝑢=𝜌𝑛
𝑣𝑢d𝑢,

where

𝑣𝑢 = 𝑣𝜌𝑛 +
∫ 𝑢

𝑠=𝜌𝑛
𝐴𝑠d𝑠 .

This implies:

�̃�𝜌𝑛+1 = 𝑋𝜌𝑛 + 𝑣𝜌𝑛 (𝜌𝑛+1 − 𝜌𝑛) +
∫ 𝜌𝑛+1

𝜌𝑛

∫ 𝑢

𝜌𝑛

𝐴𝑠d𝑠d𝑢

= �̃�𝜌𝑛 + 𝑣𝜌𝑛 (𝜌𝑛+1 − 𝜌𝑛) +
∫ 𝜌𝑛+𝑓𝑛 (𝜌𝑛+1−𝜌𝑛)

𝜌𝑛

𝑀𝑛 (𝑢 − 𝜌𝑛)d(𝑢 − 𝜌𝑛)

= �̃�𝜌𝑛 + 𝑣𝜌𝑛 (𝜌𝑛+1 − 𝜌𝑛) +
1
2
𝑀𝑛 𝑓

2
𝑛 (𝜌𝑛+1 − 𝜌𝑛)2

Substitution of �̃�𝜌𝑛 and 𝑣𝜌𝑛 from the induction hypothesis we gets:

�̃�𝜌𝑛+1 = �̃�𝜌0 + 𝑣𝜌0 (𝜌𝑛 − 𝜌0) +
𝑛−2∑
𝑘=0

𝑀𝑘 (𝜌𝑘+1 − 𝜌𝑘) 𝑓𝑘 (𝜌𝑛 − 𝜌𝑘+1) +
1
2

𝑛−1∑
𝑘=0

𝑀𝑘 𝑓
2
𝑘 (𝜌𝑘+1 − 𝜌𝑘)

2

+𝑣𝜌0 (𝜌𝑛+1 − 𝜌𝑛) +
𝑛−1∑
𝑘=0

𝑀𝑘 𝑓𝑘 (𝜌𝑘+1 − 𝜌𝑘)(𝜌𝑛+1 − 𝜌𝑛) +
1
2
𝑀𝑛 𝑓

2
𝑛 (𝜌𝑛+1 − 𝜌𝑛)2
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Figure 6.3: Illustration of various random variables in �̃�𝜌𝑛 , including the acceleration impulse
magnitude𝑀𝑘 , the idle interval 𝐼0,𝑘 , the active interval 𝐼1,𝑘 .

By collecting the terms 𝑣𝜌0 , 𝑀𝑘 𝑓𝑘 (𝜌𝑘+1 − 𝜌𝑘) and 𝑀𝑘 𝑓
2
𝑘
, we obtain:

�̃�𝜌𝑛+1 = �̃�𝜌0 + 𝑣𝜌0 (𝜌𝑛+1 − 𝜌0) +
𝑛−1∑
𝑘=0

𝑀𝑘 𝑓𝑘 (𝜌𝑘+1 − 𝜌𝑘)(𝜌𝑛+1 − 𝜌𝑘+1)+

1
2

𝑛∑
𝑘=0

𝑀𝑘 𝑓
2
𝑘 (𝜌𝑘+1 − 𝜌𝑘)

2

□
Figure 6.3 illustrates various random variables of Equation (6.12). Finding the

stopping time 𝑇 is essentially finding the first passage time, a problem that has
been well studied for Wiener process [73] with most solutions using the reflective
principle. However, since �̃�𝜌𝑘 is not Markov, the reflective principle cannot be
applied. Moreover, unlike Markov processes which tend to “forget” the distant
past, �̃�𝜌𝑘 actually sees the effect of past acceleration impulses reinforced over time.

Nevertheless, under some special assumption about𝑀𝑘 ∼ 𝐹𝑎 (·), it is still feasi-
ble to find the optimal estimate 𝜙 (�̃�𝜌𝑛 , 𝑣𝜌𝑛 ) that maximizes the expected time until
retransmissions 𝑇 .

Like the stopping time 𝑇 , we can also define the stopping time 𝜏 for the ex-
tracted stochastic process �̃�𝜌𝑘 :

𝜏 = inf{𝑛 ∈ N+ : |�̃�𝜌𝑛 − 𝑋𝜌𝑛 | ≥ 𝛿}. (6.15)

With a slight abuse of notation, we let �̃�𝜌𝑘 ≜ �̃�𝑘 .

Lemma 6.2. The expected time until retransmissions for the extracted process �̃�𝜌𝑘
is:

E[𝜏] =
∞∑
𝑛=0

(1 − 𝑃 [𝜏 ≤ 𝑛]) (6.16)

Proof. We have:

1 − 𝑃 [𝜏 ≤ 𝑛] =
∞∑

𝑘=𝑛+1
𝑃 [𝜏 = 𝑘],
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hence:
∞∑
𝑛=0

(1 − 𝑃 [𝜏 ≤ 𝑛]) =
∞∑
𝑛=0

∞∑
𝑘=𝑛+1

𝑃 [𝜏 = 𝑘] .

Because {[𝑛 + 1, +∞], 𝑛 ∈ [0, +∞]} covers the same space as {[0, 𝑛], 𝑛 ∈
[0, +∞]}, by swapping the sums:

∞∑
𝑘=0

𝑘∑
𝑛=0

𝑃 [𝜏 = 𝑘] =
∞∑
𝑘=0

𝑘𝑃 [𝜏 = 𝑘] = E[𝜏] .

□
We define the optimal estimate of a random variable 𝑋 with regard to some

predefined threshold 𝑑 > 0 as:

𝑋 = argmin
𝑐
(𝑃 [𝑋 ≤ 𝑐 − 𝑑] + 𝑃 [𝑋 > 𝑐 + 𝑑]) (6.17)

In the general case, it would require knowing the entire distribution function
of 𝑋 in order to maximize or minimize the probability of some event 𝐸 that ties
to a random variable 𝑋 . However, in the case of a symmetric distribution, we can
get around that requirement via the following lemma:

Lemma 6.3. If 𝑋 is a random variable whose distribution is symmetric, i.e.,

∃𝜇 : 𝑓𝑋 (𝜇 − 𝑥) = 𝑓𝑋 (𝜇 + 𝑥) ∀𝑥 ∈ R,

then the following statements are true:

(i). The expectation E[𝑋 ] = 𝜇,
(ii). The optimal estimate of 𝑋 is E[𝑋 ].

Proof. It is trivial to show (i). To show (ii), consider the first derivative:
d
d𝑐
(𝐹𝑋 (𝑐 − 𝑑) + 1 − 𝐹𝑋 (𝑐 + 𝑑)) = 𝑓𝑋 (𝑐 − 𝑑) − 𝑓𝑋 (𝑐 + 𝑑) = 0,

which gives 𝑓𝑋 (𝑐 − 𝑑) = 𝑓𝑋 (𝑐 + 𝑑). If the 𝑓𝑋 (·) is symmetric, then E[𝑋 ] satisfies
the equation. □

The following proposition attempts to give answer to the LOTD-TP under
some assumptions:

Theorem 6.4. Let a vehicle trajectory have its longitudinal component following
the RAIM model as described in Equation 3.3. Suppose that the distribution
of acceleration impulses 𝑀𝑘 is zero-mean and symmetric. Then, the following
estimate:

𝑋𝑛 = 𝑋0 + 𝜇𝑥,𝑛 − 𝜇𝑥,0 + (𝑣0 − 𝜇𝑣,0) (𝜌𝑛 − 𝜌0) (6.18)

solves the LOTD-TP problem (6.8).

Thinh Hoang
the sufficient condition for optimality
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We need another lemma before proving Theorem 6.4.

Lemma 6.5. Define 𝑅𝑛 = 𝑋𝑛−�̃�𝑛 as the estimate error at time 𝜌𝑛, and with a slight
abuse of notation, R𝑛 ≜ {𝜔 ∈ Ω : |𝑅𝑛 | ≤ 𝛿}, the event that the error is acceptably
bounded. Then, the distribution of 𝑅𝑛 |R1,R2, . . . ,R𝑛−1 is symmetric.

Proof. The goal is to show that ∀𝜆 ≥ 0,∀𝜖 ≥ 0, the measure of:

𝑃 [{𝑅𝑛 ∈ [𝜆, 𝜆 + 𝜖]} ∩ R1 ∩ R2 ∩ · · · ∩ R𝑛−1]

is equal to:
𝑃 [{𝑅𝑛 ∈ (−𝜆 − 𝜖,−𝜆]} ∩ R1 ∩ R2 ∩ · · · ∩ R𝑛−1]

For convenience, we define the event:

Λ = {𝜔 ∈ Ω : |𝑅1(𝜔) | ≤ 𝛿, |𝑅2(𝜔) | ≤ 𝛿, . . . , |𝑅𝑛−1(𝜔) | ≤ 𝛿, 𝑅𝑛 (𝜔) ∈ [𝜆, 𝜆 + 𝜖]},

and because Λ ∈ 𝜎 (𝑅𝑛), by definition:

𝑅𝑛 =
𝑛−1∑
𝑘=0

𝑀𝑘 𝑓𝑘 (𝜌𝑘+1 − 𝜌𝑘)(𝜌𝑛+1 − 𝜌𝑘+1) +
1
2

𝑛∑
𝑘=0

𝑀𝑘 𝑓
2
𝑘 (𝜌𝑘+1 − 𝜌𝑘)

2, (6.19)

and we have Λ ∈ 𝜎 (𝑅𝑛) ⊂ 𝜎 (𝑀𝑘 , 𝑓𝑘 , 𝐼𝑘), 0 ≤ 𝑘 ≤ 𝑛 − 1. The sample space Ω can be
written as:

Ω =
𝑛−1∏
𝑘=0

(
Ω𝑀𝑘 × Ω𝑓𝑘 × Ω𝐼𝑘

)
,

which implies that each 𝜔 ∈ Λ can be written as a vector:

𝜔 = [𝜔𝑀𝑘 , 𝜔 𝑓𝑘 , 𝜔𝐼𝑘 ] = [𝜔𝑀0, 𝜔 𝑓0, 𝜔𝐼0, 𝜔𝑀1, . . . ], 0 ≤ 𝑘 ≤ 𝑛 − 1

We define a mapping𝑊 : Ω → Ω, 𝜔 ↦→ 𝜔− where𝜔− = [𝜔−𝑀𝑘
, 𝜔−

𝑓𝑘
, 𝜔−𝐼𝑘 ], 0 ≤

𝑘 ≤ 𝑛 − 1 defined as follows:

𝜔−𝑀𝑘
= 𝜔′𝑀𝑘

, 0 ≤ 𝑘 ≤ 𝑛 − 1
𝜔−𝑓𝑘 = 𝜔 𝑓𝑘 , 0 ≤ 𝑘 ≤ 𝑛 − 1
𝜔−𝐼𝑘 = 𝜔𝐼𝑘 , 0 ≤ 𝑘 ≤ 𝑛 − 1

and 𝜔′𝑀𝑘
is defined such that:

𝑀𝑘 (𝜔′𝑀𝑘
) = −𝑀𝑘 (𝜔𝑀𝑘 ), 0 ≤ 𝑘 ≤ 𝑛 − 1.

We know that this choice is possible because 𝑀𝑘 is B(R) measurable. Define
the image of Λ through the mapping𝑊 as Λ−. From (6.19), it is evident that:

𝑅𝑘 (𝜔−) = −𝑅𝑘 (𝜔), ∀𝜔− ∈ Λ−, 𝜔 ∈ Λ,∀𝑘 : 0 ≤ 𝑘 ≤ 𝑛 (6.20)
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2!"

𝜔#

𝜔$

Figure 6.4: Discretization 𝜋 of the exemplary 2D sample space Ω and the identity mapping 1𝜋
that maps 𝐵 onto the cells whose size is 2−𝑙 .

And because Λ ∈ R𝑘 = {𝜔 ∈ Ω : |𝑅𝑘 (𝜔) | ≤ 𝛿}, Λ− = {𝜔− ∈ Ω : |𝑅𝑘 (𝜔−) | =
| − 𝑅𝑘 (𝑊 −1(𝜔−)) | ≤ 𝛿}, which implies that Λ− ∈ R𝑘 too for 0 ≤ 𝑘 ≤ 𝑛 − 1. It
also follows (6.19) that 𝑅𝑛 (𝜔−) = −𝑅𝑛 (𝜔) where 𝜔− = 𝑊 (𝜔), hence 𝑅𝑛 (Λ−) =
(−𝜆 − 𝜖, 𝜆]. Hence, Λ− ∈ 𝜎 (𝑅𝑛), which implies that a probability measure of Λ−
is possible.

Intuitively, this result roughly says that in essence, for every sample path that
reaches 𝜆 while staying bounded all the time to [−𝛿, 𝛿], there is another sample
path that reaches −𝜆 while staying bounded all the time to [−𝛿, 𝛿] too. We expect
that these two sample paths have the same probability.

We define a partition 𝜋𝑙 (Ω) of Ω =
∏
𝑘

(
Ω𝑀𝑘 × Ω𝑓𝑘 × Ω𝐼𝑘

)
, 𝑙 ∈ N+ such that:

𝜋𝑙 (Ω) =
∏
𝑘

(
𝜋𝑙,𝑀𝑘

× 𝜋𝑙,𝑓𝑘 × 𝜋𝑙,𝐼𝑘
)
, (6.21)

where 𝜋𝑙,𝑀𝑘
, 𝜋𝑙,𝑓𝑘 and 𝜋𝑙,𝐼𝑘 are disjoint unions of intervals whose length is 2−𝑙 :

𝜋𝑙,· =
⋃
𝑛∈N

(
𝑛2−𝑙 , (𝑛 + 1)2−𝑙

]
. (6.22)
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Denote n = [𝑛𝑀𝑘 , 𝑛 𝑓𝑘 , 𝑛𝐼 ,𝑘]. We further define an identity mapping:

1𝜋,𝑙 : Ω → 𝜋𝑙 (Ω),

𝜔 ↦→
⋃

n:1n (𝜔)=1

∏
𝑘

(
𝑛𝑀𝑘2

−𝑙 , (𝑛𝑀𝑘 + 1)2−𝑙
]
×

(
𝑛 𝑓𝑘2

−𝑙 , (𝑛 𝑓𝑘 + 1)2−𝑙
]
×

(
𝑛𝐼𝑘2

−𝑙 , (𝑛𝐼𝑘 + 1)2−𝑙
]
,

where:

1n(𝜔) =

1, if 𝜔𝑀𝑘 ∈ (𝑛𝑀𝑘2

−𝑙 , (𝑛𝑀𝑘 + 1)2−𝑙 ] and 𝜔 𝑓𝑘 ∈ (𝑛 𝑓𝑘2−𝑙 , (𝑛 𝑓𝑘 + 1)2−𝑙 ]
and 𝜔𝐼𝑘 ∈ (𝑛𝐼𝑘2−𝑙 , (𝑛𝐼𝑘 + 1)2−𝑙 ];
0, otherwise.

Figure 6.4 provides an example of the discretization of a 2D sample space, and
the action of the identity mapping in choosing the “cells” that contains a Borel set
𝐵, outlined in red. 1𝜋,𝑙 (𝐵) results in the shaded cells.

Consider Λ𝑙 = 1𝜋,𝑙 (Λ) and Λ−𝑙 = 1𝜋,𝑙 (Λ−). For each of them, we define two
associated events:

𝑀Λ =
⋃

n:1n (𝜔)=1
𝜔∈Λ

∏
𝑘

(
𝑛𝑀𝑘2

−𝑙 , (𝑛𝑀𝑘 + 1)2−𝑙
]
× Ω𝑓𝑘 × Ω𝐼𝑘 (6.23)

𝑁Λ =
⋃

n:1n (𝜔)=1
𝜔∈Λ

∏
𝑘

Ω𝑀𝑘 ×
(
𝑛 𝑓𝑘2

−𝑙 , (𝑛 𝑓𝑘 + 1)2−𝑙
]
×

(
𝑛𝐼𝑘2

−𝑙 , (𝑛𝐼𝑘 + 1)2−𝑙
]
, (6.24)

and
𝑀Λ− =

⋃
n:1n (𝜔)=1
𝜔∈Λ−

∏
𝑘

(
𝑛𝑀𝑘2

−𝑙 , (𝑛𝑀𝑘 + 1)2−𝑙
]
× Ω𝑓𝑘 × Ω𝐼𝑘 (6.25)

𝑁Λ− =
⋃

n:1n (𝜔)=1
𝜔∈Λ−

∏
𝑘

Ω𝑀𝑘 ×
(
𝑛 𝑓𝑘2

−𝑙 , (𝑛 𝑓𝑘 + 1)2−𝑙
]
×

(
𝑛𝐼𝑘2

−𝑙 , (𝑛𝐼𝑘 + 1)2−𝑙
]
, (6.26)

Then, it is obvious that:

𝑀Λ ∩ 𝑁Λ = Λ𝑙

𝑀Λ− ∩ 𝑁Λ− = Λ−𝑙

Moreover, notice that 𝑀Λ and 𝑀Λ− ∈ 𝜎 (𝑀𝑘), 0 ≤ 𝑘 ≤ 𝑛 − 1; while 𝑁Λ and
𝑁Λ− ∈ P \𝜎 (𝑀𝑘), 0 ≤ 𝑘 ≤ 𝑛−1. By independence of𝑀𝑘 from the RAIM model:

𝑃 [Λ𝑙 ] = 𝑃 [𝑀Λ]𝑃 [𝑁Λ]
𝑃 [Λ−𝑙 ] = 𝑃 [𝑀Λ−]𝑃 [𝑁Λ−]
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However, due to the symmetry of 𝑀𝑘 distribution:

𝑃 [𝑀Λ] = 𝑃 [𝑀Λ−],

and by construction:

𝑁Λ ≡ 𝑁Λ− ⇒ 𝑃 [𝑁Λ] = 𝑃 [𝑁Λ−],

this leads to:
𝑃 [Λ𝑙 ] = 𝑃 [Λ−𝑙 ]

and letting 𝑙 → +∞, we obtain:

𝑃 [Λ] = 𝑃 [Λ−] .

So far, the mapping 𝑅𝑛 ◦𝑊 ◦𝑅−1𝑛 maps every Borel sets in the positive half-line
to Borel sets in the negative half-line. In particular, for every sample path ends up
in [𝜆, 𝜆 + 𝜖), we find another sample path ends up in (−𝜆 − 𝜖,−𝜆] with the same
probability.

It should be obvious that 𝑅𝑛 ◦𝑊 ◦ 𝑅−1𝑛 is a bijective mapping. It is a surjec-
tion because ∀𝐵 = (−𝜆 − 𝜖,−𝜆], (𝑅𝑛 ◦𝑊 ◦ 𝑅−1𝑛 ) ( [𝜆, 𝜆 + 𝜖)) = 𝐵 so the mapping
codomain covers the entire negative half-line. To show that it is an injection, sup-
pose ∃𝐵1, 𝐵2 ⊂ [0, +∞), 𝐵∗ ⊂ (−∞, 0] : 𝑅𝑛 ◦𝑊 ◦𝑅−1𝑛 (𝐵1) = 𝑅𝑛 ◦𝑊 ◦𝑅−1𝑛 (𝐵2) = 𝐵∗.
Because 𝑅𝑛 ◦𝑊 ◦ 𝑅−1𝑛 (𝐵) = −𝐵, we have:

−𝐵1 = −𝐵2 ⇒ 𝐵1 = 𝐵2

As a result, the conditional distribution of 𝑅𝑛 conditioned on R𝑘 , 0 ≤ 𝑘 ≤ 𝑛−1
is symmetric:

𝑃 [{𝑅𝑛 ∈ [𝜆, 𝜆 + 𝜖]} ∩ R1 ∩ R2 ∩ · · · ∩ R𝑛−1]
= 𝑃 [{𝑅𝑛 ∈ (−𝜆 − 𝜖,−𝜆]} ∩ R1 ∩ R2 ∩ · · · ∩ R𝑛−1]

□
We may now prove Theorem 6.4.

Proof of Theorem 6.4. Consider the probability:

1 − 𝑃 [𝜏 ≤ 𝑛] = 𝑃 [𝜏 > 𝑛] = 𝑃 [{sup
𝑘≤𝑛
|�̃�𝑘 − 𝑋𝑘 | < 𝛿}]

= 𝑃

[⋂
𝑘≤𝑛
{|�̃�𝑘 − 𝑋𝑘 | < 𝛿}

]
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Thus, from (6.16):

E[𝜏] =
∞∑
𝑛=0

𝑃

[⋂
𝑘≤𝑛
{|�̃�𝑘 − 𝑋𝑘 | < 𝛿}

]
= 𝑃

[
{|�̃�0 − 𝑋0 | < 𝛿}

]
+ 𝑃

[
{|�̃�0 − 𝑋0 | < 𝛿} ∩ {|�̃�1 − 𝑋1 | < 𝛿}

]
+ . . . (6.27)

Let 𝑋𝑛 = 𝑋0 + 𝜇𝑥,𝑛 − 𝜇𝑥,0 + (𝑣0 − 𝜇𝑣,0)(𝜌𝑛 − 𝜌0) +𝐶𝑛, we will show that 𝐶𝑛 = 0
is necessary to maximize E[𝜏], and this will result in the estimate of (6.39). Let
C = {𝐶𝑘 , 0 ≤ 𝑘 ≤ 𝑛 − 1}. From (6.27), we may choose 𝐶0 that maximizes
𝑃 [{|𝑅0 −𝐶0 | < 𝛿}], which happens to be 𝐶0 = 0 according to Lemma 6.3. Then
we may choose 𝐶1 that maximizes 𝑃 [{|𝑅1 −𝐶1 | < 𝛿} ∩ R0], which happens also
to be 𝐶1 = 0. This procedure can be repeated for 𝑘 = 2, 3, . . . . □

Corollary 6.6. The deterministic optimal prediction rule (6.39) can be approxi-
mated as:

𝑋𝑛 = 𝑋0 + 𝜇𝑥,𝑛 − 𝜇𝑥,0 + (𝑣0 − 𝜇𝑣,0) E[𝜌𝑛 − 𝜌0], (6.28)

which can further be rewritten into:

𝑋𝑡 = 𝑋0 + 𝜇𝑥,𝑡 − 𝜇𝑥,0 + (𝑣0 − 𝜇𝑣,0)𝑡 . (6.29)

These results are the convergence bounds of (6.39) when the acceleration activ-
ity process L𝑡 regenerates fast enough, and by the law of large numbers.

Remark. The equation (6.29) reveals the three components that affect the predic-
tion of the future longitudinal position of a vehicle:

1. 𝑋0 is the last known position of the vehicle.
2. 𝜇𝑥,𝑛 − 𝜇𝑥,0 is the average (most commonly observed) distance traveled by all

the vehicles.
3. (𝑣0− 𝜇𝑣,0)𝑡 is the additional distance traveled by the host vehicle, when com-

pared to the average velocity.

Although bearing some similarities to the Constant Velocity (CV) model, the
appearance of the second term related to the average distance traveled by all ve-
hicles is crucial to ensuring the extended period of time in which the prediction
remains valid. It is related to the self-regulatory effect of distance-keeping when
vehicles traveled together.
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6.3 LOWER BOUND OF THE EXPECTED STOPPING TIME FOR LOTD-TP

In this section, we attempt to give a conservative estimate on the first passage time
𝑇 to the extracted longitudinal position process:

𝑅𝑛 = �̃�𝑛 − 𝑋𝑛 =
𝑛−1∑
𝑘=0

𝑀𝑘 𝑓𝑘 (𝜌𝑘+1 − 𝜌𝑘)(𝜌𝑛+1 − 𝜌𝑘+1) +
1
2

𝑛∑
𝑘=0

𝑀𝑘 𝑓
2
𝑘 (𝜌𝑘+1 − 𝜌𝑘)

2

The first challenge associated with the analysis of this process is that it is not
Markov. Furthermore, the more distant the impulses𝑀𝑘 are in the past, the larger
their effects become. As a result, 𝑅𝑛 is fundamentally different from the Wiener
process, and the reflective principle could not be applied. The second challenge is
that it is not known (and proven) whether E[𝑇 ] < ∞ or not.

Define the tail-sum:

𝑆𝑘 =

{∑𝑛−1
𝑙=𝑘 𝐼𝑘 , 0 ≤ 𝑘 ≤ 𝑛 − 1

0, 𝑘 = 𝑛
(6.30)

and the following process that bounds 𝑅𝑛 from below:

𝑅∗𝑛 =
𝑛−2∑
𝑘=0

𝑀∗𝑘 𝑓𝑘𝐼𝑘 (𝑆𝑘+1) +
1
2

𝑛−1∑
𝑘=0

𝑀∗𝑘 𝑓
2
𝑘 𝐼

2
𝑘

=
𝑛−1∑
𝑘=0

𝑀∗𝑘

(
𝑓𝑘𝐼𝑘𝑆𝑘+1 +

1
2
𝑓 2𝑘 𝐼

2
𝑘

)
(6.31)

where𝑀∗𝑘 is a distribution of random acceleration impulse values with only positive
support. The distribution of𝑀∗𝑘 can be obtained by transporting the negative part
of the density function to the value of zero. In other words, we assume that if 𝐴𝑛
gives a negative sign impulse, we replace it with zero. Figure 6.5 illustrates the
density function of 𝑀𝑘 and 𝑀∗𝑘 .

Define 𝑇 ∗ the first passage time of 𝑅∗𝑛 to 𝛿 :

𝑇 ∗ = inf{𝑛 ∈ N+ : 𝑅∗𝑛 ≤ 𝛿} (6.32)

then, it should be obvious that 𝑇 ∗ is a stopping time, 𝑇 ∗ ≤ 𝑇 because 𝑅𝑛 can both
increase and decrease, while 𝑅∗𝑛 can only increase. Hence,𝑇 ∗ can be regarded as the
lower bound of the passage time (or time between retransmissions) of the original
process 𝑅𝑛.

Proposition 6.7. The stopping time 𝑇 ∗ has finite expectation:

E[𝑇 ∗] < ∞
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𝑝(𝑀!)

(a)

𝑝(𝑀!
∗)

(b)

Figure 6.5: The symmetric acceleration amplitude distribution of𝑀𝑘 and the one-sided with
positive support of acceleration amplitude distribution𝑀∗𝑘 .

Proof. We have:

𝑅∗𝑛 =
𝑛−1∑
𝑘=0

𝑀∗𝑘

(
𝑓𝑘𝐼𝑘𝑆𝑘+1 +

1
2
𝑓 2𝑘 𝐼

2
𝑘

)
≥ 1

2

𝑛−1∑
𝑘=0

𝑀∗𝑘 𝑓
2
𝑘 𝐼

2
𝑘 ,

so if one define an alternative process 𝑅∗𝑙𝑏,𝑛 = 1
2

∑𝑛−1
𝑘=0𝑀

∗
𝑘
𝑓 2
𝑘
𝐼 2
𝑘
, then it is obvious

that the associated first passage time to 𝛿 : 𝑇 ∗𝑙𝑏,𝑛 ≥ 𝑇
∗.

Notice that 𝑅∗𝑙𝑏,𝑛 exhibits the Strong Markov Property. Let 𝑝 denote the prob-
ability that 𝑀∗𝑘 𝑓

2
𝑘
𝐼 2
𝑘
≥ 1, and we know that 𝑝 > 0. We define another process by

flooring the increment of 𝑅∗𝑙𝑏,𝑛:

𝑅∗𝑙𝑙𝑏,𝑛 =


𝑅∗𝑙𝑏,0, 𝑛 = 0;

𝑅∗𝑙𝑙𝑏,𝑛−1 + 1, if 𝑀∗𝑛 𝑓 2𝑛 𝐼 2𝑛 ≥ 1

𝑅∗𝑙𝑙𝑏,𝑛−1, otherwise.
(6.33)

Again, it should be obvious that 𝑅∗𝑙𝑙𝑏,𝑛 ≤ 𝑅
∗
𝑙𝑏,𝑛
∀𝑛 ∈ N+. We denote 𝑇 ∗𝑙𝑙𝑏 |𝑠 the

first passage time when 𝑅∗𝑙𝑙𝑏,𝑛 starts from 𝑠 (i.e., 𝑅∗𝑙𝑙𝑏,0 = 𝑅
∗
𝑙𝑏,0 = 𝑠), then:

𝑇 ∗𝑙𝑙𝑏 |𝑠 = 1 + 𝑝𝑇 ∗𝑙𝑙𝑏 |𝑠+1 + (1 − 𝑝)𝑇
∗
𝑙𝑙𝑏 |𝑠

−1/𝑝 = 𝑇 ∗𝑙𝑙𝑏 |𝑠+1 −𝑇
∗
𝑙𝑙𝑏 |𝑠, (6.34)

and the solution for this finite difference equation always exists. The conclusion
follows from the fact that 𝑇 ∗𝑙𝑙𝑏 |𝑛 ≥ 𝑇

∗
𝑙𝑏,𝑛
≥ 𝑇 ∗. □

We define an auxiliary random variable:

𝑊𝑛 =
2𝑅∗𝑛

𝑛 E[𝑀∗𝑘] E[𝐼𝑘]2 E[𝑓𝑘]
− 𝑛
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Proposition 6.8. With respect to the natural filtration F𝑛 of 𝑅∗𝑛, under the assump-
tion that all distributions of 𝑓𝑘 , 𝑀∗𝑘 , 𝐼𝑘 𝑊𝑛 have finite second-order moments,𝑊𝑛

approximates a martingale as 𝑛 →∞.
Proof. It is sufficient to show that:

E[𝑊𝑛+1 |F𝑛] − E[𝑊𝑛 |F𝑛] = 1,

which is equivalent to:

2
E[𝑀∗𝑘] E[𝑓𝑘] E[𝐼𝑘]2

(
𝑅∗𝑛+1
𝑛 + 1 −

𝑅∗𝑛
𝑛

)
(6.35)

We have:

𝑅∗𝑛+1 = 𝑅
∗
𝑛 +

𝑛−1∑
𝑘=0

𝑀∗𝑘 𝑓𝑘𝐼𝑘 E[𝐼𝑛] +
1
2
E[𝑀∗𝑘] E[𝑓

2
𝑘 ] E[𝐼

2
𝑘 ] .

A direct substitution to (6.35) gives:

=
2

E[𝑀∗𝑘] E[𝑓𝑘] E[𝐼𝑘]2
1

𝑛(𝑛 + 1)

(
𝑛

(
𝑅∗𝑛 +

𝑛−1∑
𝑘=0

𝑀∗𝑘 𝑓𝑘𝐼𝑘 E[𝐼𝑛]

+ 1
2
E[𝑀∗𝑘] E[𝑓

2
𝑘 ] E[𝐼

2
𝑘 ]

)
− (𝑛 + 1)𝑅∗𝑛

)

=
2

E[𝑀∗𝑘] E[𝑓𝑘] E[𝐼𝑘]2
1

𝑛(𝑛 + 1)

( 𝑛−1∑
𝑘=0

𝑀∗𝑘 𝑓𝑘𝐼𝑘𝑛 E[𝐼𝑘]+
1
2
𝑛 E[𝑀∗𝑘] E[𝑓

2
𝑘 ] E[𝐼

2
𝑘 ]−𝑅

∗
𝑛

)
,

where we have used independence of random variables where needed to simplify
the expressions. By substituting 𝑅∗𝑛 from (6.31) and splitting 𝑛 E[𝐼𝑘] into (𝑘 +
1) E[𝐼𝑘] + (𝑛 − 𝑘 − 1) E[𝐼𝑘] = (𝑘 + 1) E[𝐼𝑘] + E[𝑆𝑘+1]:

=
2

E[𝑀∗𝑘] E[𝑓𝑘] E[𝐼𝑘]2

(
1

𝑛(𝑛 + 1)

𝑛−1∑
𝑘=0

𝑀∗𝑘 𝑓𝑘𝐼𝑘

(
− 𝑆𝑘+1 + E[𝑆𝑘+1]

)
+ 1
2𝑛(𝑛 + 1)

𝑛−1∑
𝑘=0

(
−𝑀∗𝑘 𝑓

2
𝑘 𝐼

2
𝑘 + E[𝑀

∗
𝑘 𝑓

2
𝑘 𝐼

2
𝑘 ]

)
+ 1
𝑛(𝑛 + 1)

𝑛−1∑
𝑘=0

𝑀∗𝑘 𝑓𝑘𝐼𝑘 (𝑘 + 1) E[𝐼𝑘]
)

If we invoke the Law of Large Numbers as 𝑛 → ∞, it is obvious that the first
two terms converge to zero. The last term converges to 1/2E[𝑀∗𝑘] E[𝑓𝑘] E[𝐼𝑘]

2,
which is then normalized by the first product term 2/E[𝑀∗𝑘] E[𝑓𝑘] E[𝐼𝑘]

2. □
It is our belief that the regeneration rate for L𝑡 of the RAIM model is high

enough, as evidenced from Chapter 3, for Proposition 6.8 to hold. The following
theorem gives the estimate of the expectation of the stopping time for 𝑅∗𝑛:
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Theorem 6.9. If the conditions in Proposition 6.8 holds, the expected time be-
tween retransmissions 𝑇 can be bounded below (i.e., pessimistically) by:

E[𝑇 ∗] =
√

2𝛿
E[𝑀∗𝑘] E[𝑓𝑘] E[𝐼𝑘]2

, (6.36)

for the extracted process 𝑅∗𝑘 , and:

E[𝑇 ∗] =
√

2𝛿
E[𝑀∗𝑘] E[𝑓𝑘]

(6.37)

for the original process 𝑅∗𝑡 .

Proof. The results can simply be obtained by invoking the Optional Stopping The-
orem for𝑊𝑛, which is approximately a martingale for 𝑛 large enough:

E[𝑊𝑛] = E[𝑊0] = 0⇒ E[𝑇 ∗] =
2𝛿

E[𝑇 ∗] E[𝑀∗𝑘] E[𝑓𝑘] E[𝐼𝑘]2
,

which gives (6.36). Equation (6.37) is simply the result of applying the Wald
identity to (6.36). □

Algorithm 6.1: Transmission of Longitudinal Trajectory Data by Linear Extrapolation
on Mean-subtracted Residual (LEMONS).

Require: Synchronized mean trajectory 𝜇𝑥,𝑡 data of all vehicles participating in
the network.

Require: Initialization 𝛿 - the tolerable prediction error; last-known position 𝑥𝑡0 ,
velocity 𝑣𝑡0 , time index variable 𝑡0.
for measurement 𝑥𝑡 arrives do

𝑥𝑡 = 𝑥𝑡0 + 𝜇𝑥,𝑡 − 𝜇𝑥,𝑡0 + (𝑣𝑡0 − 𝜇𝑣,𝑡0) ⊲ Prediction of longitudinal position at
time 𝑡 .

if |𝑥𝑡 − 𝑥𝑡 | ≥ 𝛿 then:
Send a message includ-
ing the new position 𝑥𝑡 ,
velocity 𝑣𝑡 and the time
index 𝑡 .

⊲ These values will become 𝑥𝑡0, 𝑣𝑡0, 𝑡0 on
the client’s side.

end if
end for

Theorem 6.4 suggested the data transmission scheme described in Algorithm
6.1 is optimal in maximizing the expected time between retransmissions, and The-
orem 6.9 provides a pessimistic estimate of this time.
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6.4 THE LATERAL OTD-TP (LATD-TP)

The LATD-TP problem is quite similar to LOTD-TP, but is less challenging due
to its similarity with random walk problems. In particular, by substituting the
RYIM model (3.6) into (6.1), we obtain:

𝑋𝑡 = 𝑋𝜌0 +
∫ 𝑡

𝜌0

𝐵𝑡d𝑡,

which can be further rewritten as:

𝑋𝜌𝑛 = 𝑋𝜌0 +
𝑛−1∑
𝑘=0

𝑅𝑘 𝑓𝑘𝐼𝑘 . (6.38)

In Chapter 3, we have discussed the similarity between (6.38) and a random
walk. The goal of LATD-TP is to find the prediction rule 𝑋𝑘 ≜ 𝑋𝜌𝑘 such that the
expected time between transmissions is also maximized.

We claim that the best prediction for 𝑋𝜌𝑛 is 𝑋𝜌𝑛 = 𝑋𝜌0 .
Since the following results can be proven in a similar way to previous results, we

state them without proofs. Like before, we define R𝑘 = {𝜔 ∈ Ω : |𝑋𝜌𝑛 −𝑋𝜌𝑛 | ≤ 𝛿}.

Lemma 6.10. 𝑋𝜌𝑛 −𝑋𝜌𝑛 is a symmetric distribution, and it is also symmetric when
conditioned on R1,R2, . . . , given the distribution of yawing impulses 𝑅𝑘 are sym-
metric.

Applying Lemma 6.3, we obtain the following theorem:

Theorem 6.11. Let a vehicle trajectory have its lateral component following the
RYIM model as described in Equation 3.6. Suppose that the distribution of accel-
eration impulses 𝑅𝑘 is zero-mean and symmetric. Then, the following estimate:

𝑋𝑛 = 𝑋0 (6.39)

solves the LATD-TP problem (6.8).

In other words, the best prediction of a vehicle’s lateral position is its last known
lateral position.

6.5 STATISTICS OF THE RETRANSMISSION TIME FOR LATD-TP

For convenience, let 𝑋𝜌𝑘 ≜ 𝑋𝑘 . From (6.38), it should be obvious that if 𝑅𝑘 , 𝑓𝑘 , 𝐼𝑘
are independent random variables, the process 𝑋𝑘 is constructed in a very similar
way to the Wiener process, thus we can adapt the reflection principle to obtain the
distribution of the retransmission time.
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Lemma 6.12. The expected time until retransmission𝑇 of the extracted process 𝑋𝑘
corresponding to the RYIM model is almost surely finite.

Proof. To simplify the notations, we define 𝜙𝑘 ≜ 𝑅𝑘 𝑓𝑘𝐼𝑘 . This is a product of three
distributions corresponding to the random variables 𝑅𝑘 , 𝑓𝑘 and 𝐼𝑘 . The proceeding
is reminiscent of the proof that a Wiener process is unbounded [165].

Noticing that the lateral component of a vehicle’s trajectory must be continu-
ous, it is then sufficient to show that𝑋𝑛 grows unbounded almost surely as 𝑛 →∞.
This is equivalent to showing:

𝑃

[⋃
𝑛≥0

⋂
𝑚≥𝑛
{|𝑋𝑚 − 𝑋𝑚 | ≤ 𝑐}

]
= 0 (6.40)

Let 𝑝 be the probability that 𝜙𝑘 ≥ 2𝑐. It is obvious that with probability 𝑝,
starting from some 𝑛 with |𝑋𝑛−𝑋𝑛 | ≤ 𝑐, |𝑋𝑛+1−𝑋𝑛+1 | > 𝑐. Hence, the probability:

𝑃

[ ⋂
𝑛≤𝑚≤𝑛+𝑙

{|𝑋𝑚 − 𝑋𝑚 | ≤ 𝑐}
]
= 𝑝𝑙 → 0, as 𝑙 →∞,∀𝑛 ∈ N.

Because 𝑋𝑛 − 𝑋𝑛 grows unbounded almost surely, 𝑋𝑡 − 𝑋𝑡 grows unbounded
almost surely too. At 𝑡 = 0, 𝑋𝑡 − 𝑋𝑡 = 0 so from continuity, 𝑋𝑡 − 𝑋𝑡 must cross 𝛿
in finite time, almost surely. □

The expected time between retransmissions can be computed quite easily via
the following theorem.

Theorem 6.13. The expected time between retransmissions 𝑇 for the extracted
process 𝑋𝑛 is:

E[𝑇 ] = 𝛿2

E[𝑅2
𝑘
𝑓 2
𝑘
𝐼 2
𝑘
]
, (6.41)

and for the original process 𝑋𝑡 is:

E[𝑇 ] = 𝛿2

E[𝑅2
𝑘
𝑓 2
𝑘
𝐼𝑘]

(6.42)

Proof. The result follows the fact that 𝑋 2
𝑛 − 𝑛 E[𝑅2𝑘 𝑓

2
𝑘
𝐼 2
𝑘
] is a martingale, so by the

Optional Stopping Theorem:

E

[
𝑋 2
𝑇

E[𝑅2
𝑘
𝑓 2
𝑘
𝐼 2
𝑘
]
−𝑇

]
= E[𝑋 2

𝑇 ] − E[𝑇 ] E[𝑅2𝑘 𝑓
2
𝑘 𝐼

2
𝑘 ] = 0

⇒ E[𝑇 ] = E
[

𝑋 2
𝑇

E[𝑅2
𝑘
𝑓 2
𝑘
𝐼 2
𝑘
]

]
=

𝛿2

E[𝑅2
𝑘
𝑓 2
𝑘
𝐼 2
𝑘
]

□
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6.6 NUMERICAL SIMULATIONS

In the following, we present the simulated transmission results for the Spherical
Codec (Chapter 5) and the LEMONS algorithm (this chapter), based on 20 tra-
jectories from the NGSIM-101 dataset. Due to the faster regeneration of the lon-
gitudinal component of the trajectory compared to the lateral component, the lon-
gitudinal component exerts a dominant influence on the number of rebroadcasts
and the expected time between retransmissions 𝑇 . We will thus focus exclusively
on this component.

In both cases, the maximum tolerable error was set to 𝜖 = 3ft. The Spherical
Codec’s setup adheres to that described in Chapter 5, whereas the LEMONS al-
gorithm assumes that the mean trajectory, 𝜇𝑥,𝑡 , is the sample average derived from
ten random trajectories in the dataset and is known to all road participants. It is
important to note that, in a realistic implementation, this information would need
to be synchronized among all parties, for example, through V2X communication.
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Figure 6.6: Histogram for (a) the number of rebroadcasts (lower is better), and (b) the time
between transmissions for LEMONS (higher is better).

As indicated in Figure 6.6, LEMONS demonstrated significantly better per-
formance compared to Spherical Codec (Figure 6.7), with 5.2±1.12 transmissions
per trajectory as opposed to 9.55±2.87, representing an improvement factor of 1.8
in retransmission attempts.

In terms of the expected time between retransmissions, LEMONS also offers
a significantly longer prediction horizon, with 42.17 ± 20.84 timesteps of validity
as opposed to 11.70 ± 11.48; an improvement factor of 3.6.
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Figure 6.7: Histogram for (a) the number of rebroadcasts (lower is better), and (b) the time
between transmissions for Spherical Codec (higher is better).

These results confirm the optimality of LEMONS as a transmission scheme
that maximizes the expected time between retransmissions. Furthermore, LE-
MONS is less computationally demanding than Spherical Codec due to the ab-
sence of a particle filter. Combined with its simplicity, LEMONS is a compelling
choice for implementation on embedded platforms.

However, the implementation of LEMONS should be considered in the con-
text of other dynamic data that must be transferred as well, such as velocity, ac-
celeration, and vehicle status. Consequently, LEMONS does not aim to replace
conventional V2X CAMs or CPMs, but rather contributes to the range of so-
lutions that could be considered when communication channels are approaching
their saturation points.

Similar to Spherical Codec, LEMONS also has the limitation that vehicles
entering the reception range during silent periods do not receive any position in-
formation. Therefore, positions and status information still need to be broadcast
frequently, albeit at a reduced rate.

6.7 CONCLUSION

In this chapter, we have developed an optimal trajectory data retransmission algo-
rithm by conducting a rigorous analytical investigation of the RAIM and RYIM
models, as previously introduced in Chapter 3. These findings underscore the
broad applicability of these models and provide a comprehensive answer to the
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question of optimality within the context of the OTD-TP problem. In light of
the numerous potential data fields available for selection–such as position, veloc-
ity, and acceleration in conventional V2X messages, or FPCA scores as seen in
the Spherical Codec—the results presented in this chapter robustly demonstrate
that the mean trajectory, coupled with residual dynamic information like residual
position and velocity, are sufficient to ensure the maximal expected time between
retransmissions. It is obvious that, without the Random Impulses model, deriving
these conclusions would have been unfeasible.

Future research directions may include refining the Random Impulses model
and deriving more accurate theoretical bounds and approximations for the ex-
pected time between retransmissions. The significance of these results not only
solidifies our understanding of the OTD-TP problem as well as the Random Im-
pulses models, but also sets the stage for other engineering applications related to
vehicular networking.
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7
Filtering and Smoothing of Vehicle Trajec-
tories Extracted fromAerial Videos

Abstract
This chapter extends the application of the Random Impulses Models, as de-

tailed in Chapter 3, to detect and extract trajectory data of vehicles from aerially-
captured video streams. We implement a Deep Neural Network for vehicle detec-
tion and use the Gaussian Mixture Kalman Filter and Smoother for data smooth-
ing, based on the Random Impulses Model. Post-smoothing results demonstrate
a substantial improvement in velocity estimation accuracy, with a 50% increase in
the confidence interval.
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7.1 INTRODUCTION

In the domain of extracting high-resolution vehicle trajectories, established track-
ing frameworks such as the Simple Online and Realtime Tracking (SORT) [13]
commonly involve methods such as Kalman or Particle Filter for data assimilation,
in conjunction with theHungarian algorithm to associate measurements with their
respective targets. SORT, for instance, presupposes the following process model :

𝑥𝑘+1 = 𝑥𝑘 + 𝜖𝑘 , 𝜖𝑘 ∼𝑖 .𝑖 .𝑑 . N(0, 𝑄) (7.1)

where 𝑥𝑘 = [𝑢, 𝑣, 𝑠, 𝑟, ¤𝑢, ¤𝑣, ¤𝑠]>; here, 𝑠 and 𝑟 symbolize the scale, and𝑢, 𝑣 signify the
horizontal and vertical coordinates of the target center, respectively. However, the
model makes some questionable assumptions. For instance, the assumption about
the nature of the model being perturbed by random walk noise is not adequately
justified. Additionally, the characterization of 𝑄 as a full-rank covariance matrix
is not fully appropriate.

We now propose a novel, comprehensive filtering and smoothing framework
based on the previously validated RAIM and RYIM models. Despite extensive
research on filtering, smoothing has been relatively under-explored. To the best
of our knowledge, this is the first study to suggest a smoothing framework for this
application.

7.2 RELATEDWORKS

High-resolution trajectory datasets have become essential tools in the study of
macroscopic traffic phenomena such as car-following, lane switching, and lane-
merging [27, 166, 167]. Typically, these datasets are created through a compre-
hensive pipeline of image processing from primary sources, predominantly traffic
CCTVs and aerial videos captured by drones. Post-processing steps such as object
tracking and trajectory filtering or smoothing are important for achieving the most
accurate estimations (Figure 7.1). Each of these stages presents unique technical
challenges that influence the overall performance, including the reliability of the
object detector given varying lighting conditions and diverse vehicle appearances.
Moreover, tracking fast-moving objects and those crossing paths are inherently
sensitive to error [168], leading to incomplete or corrupted trajectory tracks.
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Trajectory
extraction

Figure 7.1: The goal of trajectory extraction is to create a set of vehicle trajectories for further
studying.

The NGSIM-101 [93] was one of the earliest and remains one of the most
popular trajectory datasets. As drone usage became more widespread, it was sug-
gested that a similar processing pipeline could be adapted for traffic videos cap-
tured from a drone. This idea brought forth new technical challenges, such as
the need to calibrate the viewing angle, position, and motion of the camera dur-
ing capture. In [169], a general trajectory extraction framework was proposed in
which vehicles were detected with a Canny edge detector and the detected edges
were merged into a cohesive region representing the vehicle. The KCF tracker
and wavelet transform were then used to denoise the resultant trajectories. Other
methods include the use of Scale Invariant Feature Transform (SIFT) features for
vehicle detection [170], optical flow for tracking [171], and a neural network for
object detection [172,173]. The latter also used a Rauch-Tung-Striebel smoother
with a constant acceleration model for trajectory smoothing.

7.3 METHODOLOGY

7.3.1 Approximated Form for Lateral Component Dynamics

Let 𝜇𝑥,𝑘 be the mean of the lateral component of the trajectory at time 𝑘. The
RYIM model suggests the following approximated model:

𝑥𝑘+1 = 𝑥𝑘 + 𝜇𝑥,𝑘+1 − 𝜇𝑥,𝑘 + 𝜂𝑥,𝑘
𝑦𝑘 = 𝑦𝑘 + 𝜁𝑥,𝑘 (7.2)

where:

𝜁𝑥,𝑘 ∼𝑖 .𝑖 .𝑑 . N(0, 𝜎2𝑥 )
𝜂𝑥,𝑘 ∼𝑖 .𝑖 .𝑑 . 𝛼𝑙N(𝜇𝑣,𝑙 , 𝜎2𝑣,𝑙 ) + 𝛼𝑐N(0, 𝜎

2
𝑣,𝑐) + 𝛼𝑟N(𝜇𝑣,𝑟 , 𝜎2𝑣,𝑟 )
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In other words, 𝜂𝑥,𝑘 samples from a Gaussian Mixture composing of three
modes corresponding to switching to left lane, lane-keeping and switching to right
lane (Fig. 3.7 (b)), rather than from a unimodal Gaussian distribution. By defini-
tion:

E[𝜂𝑥,𝑘] = 0⇒ 𝜇𝑣,𝑙 = −𝜇𝑣,𝑟 (7.3)

and
𝛼𝑙 + 𝛼𝑐 + 𝛼𝑟 = 1 (7.4)

7.3.2 Lateral Component Filtering

In the following, the filtering expressions for the particular case of RYIM model
will be presented. For a more general case of Gaussian Mixture process and mea-
surement models, we refer to [174]. Recall the fundamental equations of the
Bayesian filtering problem are:

𝑝 (𝑥𝑘 |𝑦1:𝑘) =
𝑝 (𝑦𝑘 |𝑥𝑘)𝑝 (𝑥𝑘 |𝑦1:𝑘−1)

𝑝 (𝑦𝑘 |𝑦1:𝑘−1)
(7.5)

𝑝 (𝑥𝑘+1 |𝑦1:𝑘) =
∫

𝑝 (𝑥𝑘+1 |𝑥𝑘)𝑝 (𝑥𝑘 |𝑦1:𝑘)d𝑥𝑘 (7.6)

The equations can be developed into a recursive algorithm, with 𝑞 being the length
of the trajectory and 𝑝 (𝑥1) being the prior distribution of the vehicle’s lateral po-
sition. The algorithm consists of two steps: in the measurement assimilation step,
we go from:

𝑝 (𝑥𝑘 |𝑦1:𝑘−1) =
𝑁𝑘 |𝑘−1∑
𝑙=1

𝑤 𝑙
𝑘 |𝑘−1N(𝑥

𝑙
𝑘 |𝑘−1, 𝜎

𝑙
𝑘 |𝑘−1

2) (7.7)

to:

𝑝 (𝑥𝑘 |𝑦1:𝑘) =
𝑁𝑘 |𝑘∑
𝑙=1

𝑤 𝑙
𝑘 |𝑘N(𝑥

𝑙
𝑘 |𝑘 , 𝜎

𝑙
𝑘 |𝑘

2) (7.8)

by using the Kalman update for each individual component 𝑙 of the predictive
mixture 𝑝 (𝑥𝑘 |𝑦1:𝑘−1). In the prediction step, we go from the previous posterior
distribution 𝑝 (𝑥𝑘 |𝑦1:𝑘) to the predictive distribution:

𝑝 (𝑥𝑘+1 |𝑦1:𝑘) =
𝑁𝑘+1 |𝑘∑
𝑙=1

𝑤 𝑙
𝑘+1|𝑘N(𝑥

𝑙
𝑘+1|𝑘 , 𝜎

𝑙
𝑘+1|𝑘

2) (7.9)

Given that the process model’s Gaussian mixture consists of three components,
the quantity of components in the posterior will increase exponentially as iterations
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progress. To mitigate this, we implement the Kullback-Leibler (KL) GMM Re-
duction, as outlined in Algorithm 1 of [175]. The main idea is to pairwise merge
the components that result in the KL divergence staying bounded to some thresh-
old limit. The filtering procedure for RYIM model is depicted in Algorithm 7.1.

7.3.3 Smoothing of Lateral Component

For a more precise estimation, the distribution of the state vector can be tailored
based on future observations, rather than solely relying on the observations up until
the estimation time. This leads to a smoother, which is usually formulated as:

𝑝 (𝑥𝑘 |𝑦1:𝑞) = 𝑝 (𝑥𝑘 |𝑦1:𝑘)
∫

𝑝 (𝑥𝑘+1 |𝑥𝑘)𝑝 (𝑥𝑘+1 |𝑦1:𝑞)
𝑝 (𝑥𝑘+1 |𝑦1:𝑘)

d𝑥𝑘+1 (7.10)

The conventional form described is used by the renownedRauch-Tung-Streibel
(RTS) Smoother. However, as evidenced in [176], a closed-form solution doesn’t
exist when a Gaussian mixture is involved as in the case of RYIM model. Con-
sequently, an alternative method known as the Two-Filter approach should be ap-
plied:

𝑝 (𝑥𝑘 |𝑦1:𝑞) =
𝑝 (𝑦𝑘+1:𝑞 |𝑥𝑘)𝑝 (𝑥𝑘 |𝑦1:𝑘)

𝑝 (𝑦𝑘+1:𝑞 |𝑦1:𝑘)
(7.11)

where

𝑝 (𝑦𝑘+1:𝑞 |𝑥𝑘) =∫
𝑝 (𝑦𝑘+1 |𝑥𝑘+1)𝑝 (𝑦𝑘+2:𝑞 |𝑥𝑘+1)𝑝 (𝑥𝑘+1 |𝑥𝑘)d𝑥𝑘+1 (7.12)

The precise formulas of the Two-Filter, applied to a general Gaussian mixture
for both process and measurement cases, are detailed in [175]. A standout feature
is the information form to circumvent computational singularity tied to the uni-
form distribution prior. In Algorithm 7.2, we introduce the expressions for the
Backward Information Filter, specific to the RYIM model, which noticeably in-
corporates the mean trajectory as the control input of the process model. Owing
to this unique aspect, we’ve named this algorithm Smoothing over Expectation, or
SmoothiE.

The notations used in Algorithm 7.2 are as follows: 𝑝 (𝑦𝑘+2:𝑞 |𝑥𝑘+1) is the Gauss-
ian mixture whose 𝑙th component is characterized by the information 𝐿𝑙

𝑘+1|𝑘+2,
𝑠𝑙
𝑘+1|𝑘+2 is the information vector and 𝑡𝑘+1|𝑘+2 is a helpful variable for the weight
normalization.
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Algorithm 7.1: GMKF. Abbreviations: LC - Left Change, LK - Lane Keeping, RC - Right
Change, Comp - Mixture Component.

Initialize 𝑁1|0 = 1, 𝑥11|0 = 𝑥1, 𝑝
1
1|0 = 𝜎

2
𝑥1 ⊲ A unimodal prior of the lateral

position N(𝑥1, 𝜎2𝑥1)
2: for 1 ≤ 𝑘 ≤ 𝑞 do

⊲ Measurement assimilation (Eq. 7.5)
4: 𝑁𝑘 |𝑘 = 𝑁𝑘 |𝑘−1 ⊲ Unimodal measurement model

for 1 ≤ 𝑙 ≤ 𝑁𝑘 |𝑘−1 do
6: 𝑒𝑙

𝑘
= 𝑥𝑘 − 𝑥𝑙𝑘 |𝑘−1 ⊲ Prediction error

𝜎𝑙
𝑘

2
= 𝜎𝑙

𝑘 |𝑘−1
2 + 𝜎2𝑥

8: 𝐾𝑙
𝑘
= 𝜎𝑙

𝑘 |𝑘−1
2/𝜎𝑙

𝑘

2
⊲ Kalman gain

𝑥𝑙
𝑘 |𝑘 = 𝑥

𝑙
𝑘 |𝑘−1 + 𝐾

𝑙
𝑘
𝑒𝑙
𝑘

⊲ Kalman update
10: 𝜎𝑙

𝑘 |𝑘
2
= (1 − 𝐾𝑙

𝑘
)𝜎𝑙
𝑘 |𝑘−1

2
⊲ Posterior comp. var

𝑤 𝑙
𝑘 |𝑘 =

𝑤𝑙
𝑘 |𝑘 exp

(
−1/2𝑒𝑙

𝑘

2/𝜎𝑙
𝑘

−2)
√
2𝜋𝜎𝑙

𝑘

12: Normalize {𝑤 𝑙
𝑘 |𝑘} ⊲ Posterior comp. weight

end for
14: ⊲ Prediction (Eq. 7.6)

for 1 ≤ 𝑠 ≤ 𝑁𝑘 |𝑘 do
16: for 1 ≤ 𝑗 ≤ 3 do ⊲ 3 modes: LC, LK, RC.

𝑁𝑘+1|𝑘 = 3𝑁𝑘 |𝑘
18: 𝑙 = 3(𝑠 − 1) + 𝑗

𝑥𝑙
𝑘+1|𝑘 = 𝜇𝑥,𝑘+1 − 𝜇𝑥,𝑘 + 𝑥

𝑙
𝑘 |𝑘 ⊲ Position for LC, LK, RC respectively

20: 𝜎𝑙
𝑘+1|𝑘

2
= 𝜎𝑙

𝑘 |𝑘
2 + 𝜎2𝑝 where 𝜎2𝑝 = 𝜎2𝑣,𝑙 if 𝑗 = 1, 𝜎2𝑣,𝑐 if 𝑗 = 2 and 𝜎2𝑣,𝑟 if

𝑗 = 3
𝑤 𝑙
𝑘+1|𝑘 = 𝑤

𝑠
𝑘 |𝑘𝛼𝑝 where 𝛼𝑝 = 𝛼𝑙 if 𝑗 = 1, 𝛼𝑐 if 𝑗 = 2 and 𝛼𝑟 if 𝑗 = 3

22: end for
end for

24: Perform Mixture Component pruning using KL Divergence (see Algo-
rithm 1 of [175])
end for
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7.3.4 Approximated Form for Longitudinal Component Dynamics

Let 𝑧𝑘 represent the longitudinal position and let 𝜇𝑦,𝑘 stand for the longitudinal
mean time series value at timestep 𝑘.

𝑧𝑘+1 = 𝑧𝑘 + 𝑣𝑘
𝑧𝑘+1 − 𝜇𝑦,𝑘+1 = 𝑧𝑘 − 𝜇𝑦,𝑘+1 − 𝜇𝑦,𝑘 + 𝜇𝑦,𝑘 + 𝑣𝑘

Let 𝑧𝑘 ≜ 𝑧𝑘 − 𝜇𝑦,𝑘 :

𝑧𝑘+1 − 𝑧𝑘 = 𝜇𝑦,𝑘 − 𝜇𝑦,𝑘+1 + 𝑣𝑘
𝑣𝑘 = −𝑣𝑘 + 𝑣𝑘

where 𝑣𝑘 is the numerical derivative of the mean trajectory, or the mean velocity
timeseries. The RAIM model then assumes:

𝑣𝑘+1 = 𝑣𝑘 + 𝜂𝑣,𝑘 , 𝜂𝑣,𝑘 ∼𝑖 .𝑖 .𝑑 . N(0, 𝜎2𝑣 ) (7.13)

As the result, the full process model for the longitudinal state vector 𝑧 is:{
𝑧𝑘+1 = 𝑧𝑘 + 𝑣𝑘
𝑣𝑘+1 = 𝑣𝑘+1 + 𝑣𝑘 + 𝜂𝑦,𝑘 = (𝑣𝑘+1 − 𝑣𝑘) + 𝑣𝑘 + 𝜂𝑣,𝑘

(7.14)

With a slight abuse of notation of the measurement being 𝑦𝑘 for the longitudi-
nal position at time 𝑘:

𝑦𝑘 = 𝑧𝑘 + 𝜁𝑦,𝑘 , 𝜁𝑦,𝑘 ∼𝑖 .𝑖 .𝑑 . N(0, 𝜎2𝑦 ) (7.15)

Obviously, the longitudinal component is much simpler than the lateral com-
ponent since all distributions are unimodal Gaussians. This results in a familiar
state-space model:[

𝑧𝑘+1
𝑣𝑘+1

]
=

[
1 1
0 1

] [
𝑧𝑘
𝑣𝑘

]
+

[
0
1

]
(𝑣𝑘+1 − 𝑣𝑘) +

[
0
𝜂𝑣,𝑘

]
(7.16)

𝑦𝑘 =
[
1 0

] [
𝑧𝑘
𝑣𝑘

]
+ 𝜁𝑦,𝑘 (7.17)

7.3.5 Filtering and Smoothing of Longitudinal Component

The aforementioned state-space model enables conventional implementation of
theKalman Filter [177] for the longitudinal component. When considering smooth-
ing, one might tempt to apply the Two-Filter Approach, as detailed in preceding
sections.
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(a) (b)

Figure 7.2: (a) An original frame from the NGSIM 101 dataset and (b) the frame whose per-
spective is corrected.

Equation (7.16) implies a process model covariance matrix of

𝑄 =

[
0 0
0 𝜎2𝑣

]
(7.18)

which does not have full-rank, complicating calculations like 𝑂𝑠
𝑘+1 in Algorithm

7.2. We suggest using the RTS smoother to avoid this, as it doesn’t require inver-
sion of the process covariance matrix.

7.3.6 Experimental Results

We derive vehicle trajectories from the NGSIM 101 dataset’s aerial footage. Due
to unavailable camera calibration information, we manually rectified perspective
(Fig. 7.2), using pixel coordinates directly. While this doesn’t yield measurements
in meters, it is sufficient to demonstrate the proposed filter and smoother’s effec-
tiveness.

The full trajectory extraction framework is presented in Fig. 7.3. The car po-
sitions and bounding boxes on the perspectived transformed frame are detected
with YOLOv8 [178] trained with 200 manually collected examples. The Precision-
Recall Curve is shown in Fig. 7.4.

Raw trajectory extracted from the CSRT tracker, a direct application of Algo-
rithm 7.1 and 7.2 for the lateral component, along with the KF and RTS smoother
for the longitudinal component reveal the results shown in Fig. 7.5-7.7. Here the
trajectories are represented in the nominal unit of pixel (px) since the metric unit
requires camera calibration settings, which were unfortunately unavailable from
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YOLOv8 CONVOLUTIONAL
NEURAL NETWORK

OBJECT DETECTION

CSRT
TRACKER

RAW TRAJECTORY

GMKF
KF

SMOOTHIE

FILTERED TRAJECTORY

SMOOTHED TRAJECTORY

Figure 7.3: Overview of the trajectory extraction framework: the GMKF and SMOOTHIE are
thenovel filter and tracker proposedbyusing the approximatedRandom Impulses as dynamics
models. The neural network detects cars from the video frames, while the CSRT tracker yields
raw trajectories from the detected objects.
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Figure 7.4: Precision-recall characteristics of the deep convolutional neural network for detec-
tion of cars in video frames.
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Figure 7.5: Estimation of lateral position 𝑥 .

the dataset. However, regardless of the unit, the principle of operation for the
tracker and the smoother remain the same. Here we have used the following pa-
rameters: 𝜎𝑥 = 𝜎𝑦 = 0.3, 𝜎𝑣 = 0.2, 𝛼𝑙 = 0.05, 𝜇𝑙 = −1.5, 𝜎𝑣,𝑙 = 0.1, 𝛼𝑣,𝑐 = 0.9, 𝜎𝑣,𝑐 =
0.1, 𝛼𝑣,𝑟 = 0.05, 𝜇𝑣,𝑟 = 1.5, 𝜎𝑣,𝑟 = 0.1.

The data clearly demonstrates that both the filter and the smoother produced
similar outcomes concerning the lateral and longitudinal position of the vehicle.
Nonetheless, the smoother’s performance displayed a significant enhancement with
approximately a twofold decrease in the confidence interval of the velocity. The
method’s uniqueness lies in the provision of the smoothed MMSE, coupled with
the availability of the confidence interval, distinguishing it from conventional de-
noising techniques where a confidence interval is not usually obtainable. In sce-
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Figure 7.6: Estimation of longitudinal position 𝑦. The difference between estimates are negli-
gible.
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Figure 7.7: Estimation of velocity 𝑣 .
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narios where the vehicle’s velocity does not factor into the application, using the
filtered result could be sufficient for the sake of simplicity.

7.3.7 Estimation of the Mean Trajectory

As a prerequisite to both RAIM and RYIM models, the mean trajectory has to be
computed for both the lateral and longitudinal components.

Proposition 7.1. The unbiased estimate of the mean trajectory is the empirical
mean of the trajectory samples. The growth rate of the sample set size is pro-
portional to 𝑛2, where 𝑛 signifies the length of the mean trajectory.

Proof. From the approximated RYIM model (7.2):

𝑥𝑘+1 = 𝑥𝑘 + 𝜇𝑥,𝑘+1 − 𝜇𝑥,𝑘 + 𝜂𝑥,𝑘 + 𝜁𝑥,𝑘
then, with 𝑛 being the length of the trajectory, we have:

𝑥𝑛 − 𝑥1 = 𝜇𝑥,𝑛 − 𝜇𝑥,1 +
𝑛−1∑
𝑘=1

(
𝜂𝑥,𝑘 + 𝜁𝑥,𝑘

)
Suppose the set of samples for 𝑥𝑛 − 𝑥1 is {𝑥 (𝑖)𝑛 − 𝑥 (𝑖)1 }𝑚𝑖=1, using Central Limit

Theorem (CLT): ∑𝑚
𝑖=1(𝑥

(𝑖)
𝑛 − 𝑥 (𝑖)1 ) −𝑚(𝜇𝑥,𝑛 − 𝜇𝑥,1)√

𝑚

→𝐷 N(0, (𝑛 − 1)(𝑉𝑎𝑟 [𝜂𝑥,𝑘] +𝑉𝑎𝑟 [𝜁𝑥,𝑘]))
or:

1
𝑚

(
𝑚∑
𝑖=1

(𝑥 (𝑖)𝑛 − 𝑥 (𝑖)1 ) − (𝜇𝑥,𝑛 − 𝜇𝑥,1)
)

→𝐷 N
(
0,
𝑛 − 1
𝑚
(𝑉𝑎𝑟 [𝜂𝑥,𝑘] +𝑉𝑎𝑟 [𝜁𝑥,𝑘])

)
where→𝐷 signifies convergence in distribution.

In other words, the size of the dataset required for estimation of the mean
lateral component is proportional to the length of the trajectory:

𝑚 = 𝑂 (𝑛) (7.19)

For the longitudinal component, we have:

𝑦𝑛 − 𝑦1 =
𝑛−1∑
𝑘=1

𝑣𝑘
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We also have:

𝑣𝑘 − 𝑣1 = 𝜇𝑣,𝑘 − 𝜇𝑣,1 +
𝑘=1∑
𝑗=1

𝜂𝑣, 𝑗

Then, it is not hard to see that:

𝑦𝑛 − 𝑦1 =
𝑛−1∑
𝑘=1

(𝑣1 + 𝜇𝑣,𝑘 − 𝜇𝑣,1) +
𝑛−1∑
𝑘=1

𝑘−1∑
𝑗=1

𝜂𝑣, 𝑗 + 𝜁𝑦,𝑛

Notice thatE 𝑣1 = 𝜇𝑣,1, and that both 𝑣1 and 𝜁𝑦,𝑛 are dominated by the
∑𝑛−1
𝑘=1

∑𝑘−1
𝑗=1 𝜂𝑣, 𝑗

term if 𝑛 is sufficiently large, using CLT again:

1
𝑚

(
(𝑦 (𝑖)𝑛 − 𝑦 (𝑖)1 ) −

𝑛−1∑
𝑘=1

𝜇𝑣,𝑘

)
→𝐷 N

(
0,
(𝑛 − 2)(𝑛 − 1)

2𝑚
𝑉𝑎𝑟 [𝜂𝑣 ]

)
Consequently, the size of the sample set𝑚 grows with the square of the length

of the vehicle trajectory:
𝑚 = 𝑂 (𝑛2) (7.20)

□

7.4 DISCUSSION AND CONCLUSION

This chapter presents a comprehensive probabilistic framework for filtering and,
more importantly, smoothing of trajectories from aerial videos. While the position
estimates of the vehicles don’t differ substantially between filtering and smoothing,
velocity estimation proves to be much more effective, as indicated by a confidence
interval reduction of approximately 50%. This chapter also provides the theoreti-
cal background, justification, and reference implementation for the use of random
walks as process noise models for vehicle tracking. While the application is cur-
rently limited to trajectory extraction from aerial videos, we believe these principles
could be applicable in various automotive contexts, such as radar tracking and an-
tenna beamforming.

However, we acknowledge several unaddressed shortcomings that warrant fur-
ther research. Firstly, a more detailed experimental or numerical study that com-
pares filtering and smoothing results against other common trackers is needed.
Secondly, different mixture components pruning strategy may be studied to speed
up the filter and smoother’s performance.
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Algorithm 7.2: Smoothing of lateral component (SMOOTHIE).

Initialize 𝐿1
𝑞 |𝑞+1 = 0, 𝑠𝑞 |𝑞+1 = 0, 𝑡𝑞 |𝑞+1 = 0, 𝑁𝑞 = 1

for 𝑞 − 1 ≥ 𝑘 ≥ 1 do
⊲ Measurement assimilation (Eq. 7.11)

for 1 ≤ 𝑙 ≤ 𝑁𝑘+1 do
𝐿𝑙
𝑘+1|𝑘+1 = 𝐿

𝑙
𝑘+1|𝑘+2 + 1/𝜎

2
𝑥

𝑜𝑘+1 = −𝑦𝑘+1
𝑠𝑙
𝑘+1|𝑘+1 = 𝑠

𝑙
𝑘+1|𝑘+2 + 𝑜𝑘+1/𝜎

2
𝑥

𝑡 𝑙
𝑘+1|𝑘+1 = 𝑡

𝑙
𝑘+1|𝑘+2 + 𝑜

2
𝑘+1/𝜎

2
𝑥 + ln(2𝜋𝜎2𝑥 )

end for
⊲ Backward prediction (Eq. 7.12)

for 1 ≤ 𝑙 ≤ 𝑁𝑘+1 do
for 1 ≤ 𝑖 ≤ 3 do

𝑠 = 3(𝑙 − 1) + 𝑖
𝜎2𝑝 = 𝜎

2
𝑣,𝑙

if 𝑖 = 1, 𝜎2𝑣,𝑐 if 𝑖 = 2 and 𝜎2𝑣,𝑟 if 𝑖 = 3
𝛼𝑝 = 𝛼𝑙 if 𝑖 = 1, 𝛼𝑐 if 𝑖 = 2 and 𝛼𝑟 if 𝑖 = 3
𝑂𝑠
𝑘+1 =

1
𝐿𝑙
𝑘+1 |𝑘+1+1/𝜎

2
𝑝

𝐿𝑠
𝑘 |𝑘+1 =

1
𝜎2𝑝
(1 −𝑂𝑠

𝑘+1/𝜎
2
𝑝)

𝑏𝑖
𝑘
= 𝜇𝑥,𝑘+1− 𝜇𝑥,𝑘 + 𝜇𝑣,𝑙 if 𝑖 = 1, 𝜇𝑥,𝑘+1− 𝜇𝑥,𝑘 if 𝑖 = 2, 𝜇𝑥,𝑘+1− 𝜇𝑥,𝑘 + 𝜇𝑣,𝑟

if 𝑖 = 3

𝑠𝑠𝑘 |𝑘+1 =
1

𝜎2𝑝

(
𝑏𝑖𝑘 +𝑂

𝑠
𝑘+1

(
𝑠𝑙𝑘+1|𝑘+1 −

𝑏𝑖
𝑘

𝜎2𝑝

))

𝑡𝑠𝑘 |𝑘+1 = 𝑡
𝑙
𝑘+1|𝑘+1 −𝑂

𝑠
𝑘+1𝑠

𝑙
𝑘+1|𝑘+1

2 + ln𝜎2𝑝 − 2 ln𝛼𝑝

− ln |𝑂𝑠𝑘+1 | + 𝑏
𝑖
𝑘/𝜎

2
𝑝

(
𝑏𝑖𝑘 + 2𝑂

𝑠
𝑘+1𝑠

𝑙
𝑘+1|𝑘+1 −𝑂

𝑠
𝑘+1𝑏

𝑖
𝑘/𝜎

2
𝑝

)
end for

end for
⊲ Convert to state-covariance form

for each comp 𝑙 of the predictive mixture 𝑘 |𝑘 + 1 do
𝜎𝑙

2
= 1/𝐿𝑙

𝜇𝑙 = −𝜎𝑙 2𝑠𝑙
𝑤 𝑙 = 0.5(ln |2𝜋𝜎𝑙 2 | + 𝐿𝑙𝜇𝑙 2 − 𝑡 𝑙 )

end for
Perform Mixture Component pruning using KL Divergence (see Algorithm

1 of [175])
⊲ Convert back to information form
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Algorithm 7.2: Smoothing of lateral component (SMOOTHIE) - continued.

for each comp 𝑙 of the predictive mixture 𝑘 |𝑘 + 1 do
𝐿𝑙 = 1/𝜎𝑙 2

𝑠𝑙 = −𝐿𝑙𝜇𝑙
𝑡 𝑙 = 𝜇𝑙

2/𝜎𝑙 2 + ln |2𝜋𝜎𝑙 2 | − 2𝑤 𝑙

end for
end for
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PART 2

Ancillary Studies: Dimensionality
Reduction and Clustering
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8
DualDirichletProcesses forUnsupervised
SegmentationofFunctionalDatawithAp-
plicationtoLane-changingBehaviorChar-
acterization

Abstract
Many functional data types in traffic research, engineering, and finance are

multi-modal, that is to say, containing multiple segments generated from the re-
spective independent stochastic processes. Identifying the presence of modes in
these data generally requires solving the two interlocked problems of change point
detection and segment clustering at the same time. Available methods often re-
quire specifying the prior distribution based on the duration between change points
and the number of modes or clusters in advance. Little is known about this infor-
mation; hence in this chapter, we present a novel algorithm for unsupervised seg-
mentation of such data that uses the Hierarchical Dirichlet Process as the prior for
the number of change points and the membership function of each segment. The
algorithm, in theory, might support an infinite number of change points and clus-
ters but will try its best to explain the observations using as few clusters and change
points as we like through the control of two hyper-parameters. Simulations on the
lane-changing behavior dataset are given to demonstrate the algorithm.
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8.1 INTRODUCTION

With the deployment of a new generation of road vehicles and instruments, the
enormous amount of data generated by this intelligent transportation infrastruc-
ture can enable smarter decision makings, safer and better driving experiences.
Time series are very commonly found in such system, hence analyzing this kind
of data is extremely important. Despite the fact that functional data analysis is a
majored field, there are still many hurdles to overcome since a common assump-
tion of the time series being stationary rarely applies, for example, lateral vehicle
trajectory data often harbors interleaved periods of lane-keeping where vehicles
move in an almost straight trajectory, and lane-changing where vehicles deviate
from the current lane to switch to the left or right adjacent lane. The underlying
data generation processes are often multi-modal: either the dynamics will change
with time, or the parameters associated with the model will shift. More than often,
the change could be abrupt (such as in lateral trajectories) than smooth (in longi-
tudinal trajectories). As a result, recognition of these changes may have strong
implications on applications such as fault detection, monitoring and in designing
fault-tolerant safety systems. This problem is called change point detection, where
the change point indicates the moment when the segment of the time series after
the change point is no longer generated by the same one before it. In other words,
the change point indicates an abrupt change in the model, often associated with a
significant event.

A common use case of change point detection is to detect the change of statis-
tics such as the mean, variance or the slope of the time series (see Fig. 8.1). Ap-
plications have been found in detecting faults in the Tennessee Eastman Process
[179], climate change models [180], calculation of financial returns [181] and the
effects of the OPEC oil embargos on the U.S. stock market exchange [182]. A
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Figure 8.1: A sample time series with 2 change points: at 𝑡 = 20where themean of the process
changes, and at 𝑡 = 40 where the variance of the process changes.

change point detection algorithm is often formulated as an optimization prob-
lem that aims to maximize the maximum likelihood from the product distribution
where data is often assumed to be independently drawn from a distribution such
as Gaussian [183] or Poisson [184]. Although exact solution to the optimization
problem is possible, the exponential growth of the search space with the number of
change points makes detection impossible from the practical point-of-view. Dy-
namic programming was introduced to circumvent the issue by breaking down the
problem of finding optimal 𝑛 change points into finding one optimal change point,
given 𝑛−1 previous optimal change points for all substrings of the time series were
given.

In many cases, change point detection algorithms require specification of the
number of change points in advance, or a prior distribution on the duration be-
tween change points, which in all cases, is not a trivial task. On the other hand,
the problem about unknown the number of states has been partially addressed in
non-parametric statistics, notably the use of Dirichlet process as prior distribution
for the number of hidden states of the Markov Chain [185] and the number of
hidden Markov Chains in speaker diarization [186].

In this chapter, we present a novel algorithm that performs simultaneous change
point detection and classification (clustering) of segments of similar slopes, which
characterize the lane-keeping and lane-changing behaviors in the vehicle trajec-
tory data (Fig. 8.2). Because Dirichlet processes are used as prior for both the
number of change points and clusters, finding the precise distribution of change
points is unnecessary but instead, two concentration parameters are sufficient to
control the number of change points and clusters expected to be present in the
dataset. Results from the algorithm are valuable for analysis of lane-change be-
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Figure 8.2: Sample lateral trajectories from the NGSIM-101 dataset.

haviors, trajectory prediction as well as anomaly detection systems. The rest of the
chapter is organized as follows: an overview of the literature about change point
detection is given in section 8.2. In section 8.3, we formulate the problem in a rig-
orous mathematical framework and derive the Gibbs sampler. In section 8.4, we
provide a simulation results on the lateral trajectories extracted from the NGSIM-
101 [187] dataset and make comparison with some of the popular Bayesian change
point detection methods. The chapter is concluded in section 8.5.

8.2 RELATEDWORK

Change point detection is a large and majored field with a vast number of ap-
proaches. According to [188], the algorithms can be divided based on the model
of the cost function, the search method and the type of constraints present. Due
to the length limit, we shall only focus on algorithms close to our approach, which
involves maximizing the likelihood as the cost function, as well as having an un-
known number of change points presenting in the time series. The problem is typi-
cally formulated under product partition model [189], where the change points are
searched to maximize the likelihood assuming independence of segments between
change points. The emission distribution is frequently assumed to be Gaussian,
Poisson or belonging to the exponential family [190], with applications in finan-
cial stock market [191], climate models [192,193].

The algorithm must know the exact number of change points in order to op-
timize their placements. As a result, the problem of unknown number of change
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points is reduced to either placing a prior distribution on the discrete domain N or
adding a constraint into the cost function, both of which are equivalent from the
mathematical point of view. Historically, ℓ0, ℓ1 norms were used [188, 194, 195].
In parallel, Dirichlet process prior was successfully applied to constrain the num-
ber of clusters in the Gaussian Mixture Model [196]. The formulation allows
one to account for potentially unlimited number of clusters with a gradual build
up process on the number of clusters, thus prevents one from having to place an
upper limit of clusters and calculate the likelihood for all number of clusters less
than the predefined limit. The model was expanded for grouped data by nesting
two Dirichlet process together, often referred to as Hierarchical Dirichlet Process,
that accounts for unknown number of states in the Hidden Markov Chain, and
unknown number of groups in the dataset at the higher level [186,197]. Themodel
has demonstrated state of the art performance in speech recognition, speaker di-
arization and recognition of human motion data [198].

8.3 METHODOLOGY

8.3.1 Problem Formulation

The basic intuition is based on two observations of the lateral trajectories dataset:

1. Although it is not known about the exact number of change points in each
time series, it is reasonable to assume that the number of change points
corresponding to each vehicle passing through the same area is sampled from
an invariant (latent) discrete distribution.

2. The lane-changing dynamics should be similar, whether it is in the same
trajectory of one vehicle, or between two lane changing attempts of two
different vehicles.

With these two observations, we can therefore define the change point detec-
tion problem in a rigorous mathematical framework:

Definition 8.1 (Time Series and Dataset). Let a time series be denoted as x =
{𝑥 [𝑡], 𝑡 ∈ {1, 2, . . . ,𝑇 }} ∈ R𝑇 . We also define the collection of time series in
the dataset as 𝑋 = {x𝑖}, 𝑖 ∈ {1, 2, 3, . . . ,𝑚}.

In the definition above, a dataset containsmultiple time seriesx𝑖 . Each time se-
ries contains a set of proprietary change points C𝑖 . Let𝑥𝑖: 𝑗 = {𝑥 [𝑖], 𝑥 [𝑖+1], . . . , 𝑥 [ 𝑗]}.
Following the product partition model [189]:

Definition 8.2 (Change point). A change point 𝑐 of a time series x containing only
one change point is the index of the time step 𝑐 such that: 𝑝 (x) = 𝑝 (𝑥1:𝑐)𝑝 (𝑥𝑐:𝑇 ).
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Likewise, a time series x is said to possess a set of change points C𝑖 = {𝑐1 =
1, 𝑐2, . . . , 𝑐𝑀 = 𝑇 } if max𝑐𝑖 𝑗 𝑝 (x|𝑐𝑖 𝑗 ) = 𝑝 (𝑥1:𝑐1)𝑝 (𝑥𝑐1:𝑐2) . . . 𝑝 (𝑥𝑐𝑀−1:𝑐𝑀 ). We call each
𝑥𝑐𝑚 :𝑐𝑚+1 a segment of the time series x.

In the change point model above, each segment 𝑥 𝑗 = 𝑥𝑐𝑚 :𝑐𝑛 is generated from a
stationary process associated with some parameter 𝜃 𝑗 . Between the change points,
the parameter 𝜃 𝑗 will abruptly change from one value to another and the later
segment is assumed to be independent of all the earlier ones. In other words, we
assume that the time series will “forget” about all of its history after the change
point.

For each time series x𝑖 in the dataset 𝑋 , we would like to find the placements
of the change points 𝑐𝑖 𝑗 such that:

𝑐𝑖 𝑗 = argmax
𝑐𝑖 𝑗

𝑝 (x𝑖 |𝑐𝑖 𝑗 ) (8.1)

where 𝑝 (x𝑖 |𝑐𝑖 𝑗 ) is the probability of observing the time series x𝑖 from the model
defined as in Definition 8.2:

𝑝 (x𝑖 |𝑐𝑖 𝑗 ) = 𝑝 (𝑥1:𝑐1−1)𝑝 (𝑥𝑐1:𝑐2−1) . . . 𝑝 (𝑥𝑐𝑀−1−1:𝑐𝑀 ) (8.2)

in which, the probability of observing a segment 𝑝 (𝑥𝑐𝑚 :𝑐𝑚+1) is defined as follows:

Definition 8.3 (Homogeneity - Typicality - Popularity (HTP) model). Define Θ as
the set of all hyper-parameters, 𝑖𝑚 the segment indicator variable for the segment
𝑥𝑐𝑚 :𝑐𝑚+1 , the joint probability of the indicator variable and the observation is mod-
eled as:

𝑝 (𝑥𝑐𝑚 :𝑐𝑚+1, 𝑖𝑚;Θ) = 𝑝 (𝑥𝑐𝑚 :𝑐𝑚+1 |𝑎∗)𝑝 (𝑎∗ |𝑖𝑚;Θ)𝑝 (𝑖𝑚;Θ) (8.3)

We now explain in details the HTP model. The reason why the three terms on
the right hand side of Equation (8.3) are respectively called homogeneity, typicality
and popularity will be made clear in subsequent discussions.
Homogeneity term. We assume each segment can be decomposed by 𝑊 basis
functions:

𝑥 [𝑡] =
𝑊∑
𝑤=1

𝑎𝑤𝜙𝑤 [𝑡] (8.4)

and 𝑎∗ = {𝑎𝑤 } coefficients are the least-square solutions to the approximation
problem:

𝑎∗ = argmax
𝑎𝑤
‖𝑥 [𝑡] −

𝑊∑
𝑤=1

𝑎𝑤𝜙𝑤 [𝑡] ‖2 (8.5)
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We recall the trivial result that the analytical solution to the above problem
can be written as (Φ𝑇Φ)−1Φ𝑇𝑋 . If the basis Φ[𝑘] = 𝑘 is used, the 𝑎∗ correspond-
ing to the slope of the classic linear regression problem. Assuming the Gaussian
observation model:

𝑝 (𝑥𝑖: 𝑗 |𝑎∗) =
𝑗∏
𝑘=𝑖

1
√
2𝜋𝜎𝜖

exp

[
− (𝑥𝑘 − 𝑎

∗⊺Φ[𝑘])2
2𝜎2𝜖

]
(8.6)

Because this probability is small if the least square approximation of the original
time series is poor and vice-versa, the term describes the “homogeneity” of the
segment: whether it is well-explained by its approximation coefficients.
Typicality term. Let 𝑎∗ be clustered by a Gaussian Mixture Model (GMM):

𝑝 (𝑎∗) =
𝑁𝑐,𝑚𝑎𝑥∑
𝑁𝑐=1

𝜋𝑁𝑐N(𝑎∗; 𝜇𝑁𝑐 , Σ𝑁𝑐 ) (8.7)

and 𝑖𝑚 the indicator variable of the segment: 𝑖𝑚 ∈ {1, 2, . . . , 𝑁𝑐,𝑚𝑎𝑥 }. We have:

𝑝 (𝑎∗ |𝑖𝑚) = N(𝑎∗; 𝜇𝑖𝑚 , Σ𝑖𝑚 ) (8.8)

This quantity depends on how close 𝑎∗ is to its assigned cluster’s mean.
Popularity. The final term represents the likelihood of the cluster itself, which is
nothing more than just the mixing proportion 𝜋𝑁𝑐 in Equation (8.7).

8.3.2 Inference Model

Figure 8.3 illustrates the intuition behind the algorithm. In essence, we want to
place the change points at places such that the slope of each segment will fit best
into one of the available clusters of “slopes”. We look for the solution such that both
the number of change points and the number of clusters are constrained - which in
our case, thanks to the Dirichlet Process prior - to prevent overfitting, which is the
phenomenon where the algorithm decides to open too many clusters and change
points, resulting in very short segments but achieving very high likelihood.

While 𝑖𝑚 can be marginalized out of Equation (8.3), without the number of
change points 𝑀 , one can hardly solve the problem in Equation (8.1). To this
aspect, we rely on other time series in 𝑋 and the assumption that the number
of change points across different time series should follow a similar distribution
whose prior is a Dirichlet Process with rate 𝛼𝑐𝑝 :

𝑀𝑖 |𝛼𝑐𝑝 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡
(
·|
𝛼𝑐𝑝

𝐾
, . . . ,

𝛼𝑐𝑝

𝐾

)
(8.9)
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𝛼𝑐𝑝 will control the rate of increasing the number of change points. The number
of change points decides on the number of segments in the dataset:

𝑀 =
∑
𝑖

𝑀𝑖𝑚 (8.10)

and the clustering of segments is similar to a Dirichlet Process - Gaussian Mixture
Model [185,196]:

𝜋 |𝛼 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (·|𝛼/𝐾, . . . , 𝛼/𝐾)
𝑖𝑖 𝑗 |𝜋 ∼ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 (𝜋)

𝑥𝑖 𝑗 |𝑐𝑖 𝑗 = 𝑘 ;Θ ∼ N(𝜇𝑘 , Σ𝑘)
𝜇𝑘 ∼ N(𝜇0, Σ0)

Σ𝑘 = Σ1∀𝑘

(8.11)

We will also consider the following model:

𝜋 |𝛼 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (·|𝛼/𝐾, . . . , 𝛼/𝐾)
𝑖𝑖 𝑗 |𝜋 ∼ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 (𝜋)

𝑥𝑖 𝑗 |𝑐𝑖 𝑗 = 𝑘 ;Θ ∼ N(𝜇𝑘 , Σ𝑘)
𝜇𝑘 ∼ N(𝜇0, Σ𝑘/𝜅0)

Σ𝑘 ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 −𝑊𝑖𝑠ℎ𝑎𝑟𝑡𝜈0
(
Λ−10

) (8.12)

Model (8.11) is different from model (8.12) only about the assumption of the
cluster variance Σ𝑘 . The former one assumes a constant variance across all clusters,
which may help considerably in computational complexity and facilitate a simpler
implementation.

The entire inference dependency graph is shown in Figure 8.4. We propose a
two-step algorithm to solve the problem (8.1). The algorithm alternates between
the change point optimization phase, which uses dynamic programming to solve
for the exact location of change points and the segment clustering phase that fol-
lows attempts to classify the slopes of the curve into clusters (Figure 8.5). Cluster
means and variances are fed back to the Change point Optimizer to be employed
in the HTP model (8.3).

8.3.3 Determining the number of change points

Traditionally, the probabilities are derived in the Gibbs sampling framework. De-
fine 𝑛(𝑀)−𝑖 as the number of time series, except for the ith time series, in 𝑋 such
that its number of change points is𝑀 , the exchangeability property of the Dirich-
let Process allows us to write the probability that the ith time series contains 𝑀
change points:
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Figure 8.3: The algorithm performs simultaneous clustering of “curve slopes” (in the case of
a linear basis) and change point detection. The upper graph shows the time series and the
positions of change points, the lower graph shows the slopes of each segment A, B, C, along
with a Gaussian Mixture fitted to show two clusters of slopes, representing lane keeping and
lane changing behavior respectively.
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Figure 8.4: Bayesian Graph for the Unsupervised Segmentation Problem.
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𝑐𝑖 𝑗 𝜇𝑘 , Σ𝑘

Figure 8.5: Two modules of the algorithm

Number of change points for which 𝑛(𝑀)−𝑖 > 0:

𝑝 (𝑀𝑖 = 𝑀 |𝑋 ) = 𝑝 (𝑀𝑖 = 𝑀 |𝑀 (𝑀)−𝑖 , 𝛼𝑐𝑝) (8.13)

=
𝑛(𝑀)−𝑖

𝑚 − 1 + 𝛼𝑐𝑝
(8.14)

All other number of change points combined:

𝑝 (𝑀𝑖 ≠ 𝑀𝑖 ′ for all 𝑖 ≠ 𝑖′|𝑋 ) (8.15)

= 𝑝 (𝑀𝑖 ≠ 𝑀𝑖 ′ for all 𝑖 ≠ 𝑖′|𝑀 (𝑀)−𝑖 , 𝛼𝑐𝑝) (8.16)

=
𝛼𝑐𝑝

𝑚 − 1 + 𝛼𝑐𝑝
(8.17)

For each time series 1 ≤ 𝑖 ≤ 𝑚 brought into consideration, equations (8.14)
and (8.17) provide a discrete distribution that can be sampled to yield the number
of change points for x𝑖 ∈ 𝑋 :

𝑀𝑖 ∼ 𝑝 (𝑀𝑖 = 𝑘 |𝑋 ), 𝑘 ∈ {1, 2, . . . } (8.18)

8.3.4 Optimizing Change points

With the number of change points available, many methods can be used to find
the location of the change points 𝑐𝑖 𝑗 . In this case, we opted for exact method using
dynamic programming [188,199].

From (8.3), we can integrate out the indicator variables:
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𝑝 (𝑥𝑐𝑚 :𝑐𝑚+1 ;Θ) =
𝑘=+∞∑
𝑘=1

𝑝 (𝑥𝑐𝑚 :𝑐𝑚+1, 𝑖𝑚 = 𝑘 ;Θ) (8.19)

=
𝑘=+∞∑
𝑘=1

𝑝 (𝑥𝑐𝑚 :𝑐𝑚+1 |𝑎∗)𝑝 (𝑎∗ |𝑖𝑚 = 𝑘 ;Θ)𝑝 (𝑖𝑚 = 𝑘 ;Θ) (8.20)

= 𝑝 (𝑥𝑐𝑚 :𝑐𝑚+1 |𝑎∗)
𝑘=+∞∑
𝑘=1

𝑝 (𝑎∗ |𝑖𝑚 = 𝑘 ;Θ)𝑝 (𝑖𝑚 = 𝑘 ;Θ) (8.21)

To avoid cluttering of notations, we will call the 𝑗th segment of the time series
under consideration as 𝑥 𝑗 . (8.21) can be rewritten as:

𝑝 (𝑥 𝑗 ;Θ) = 𝑝 (𝑥 𝑗 |𝑎∗)
𝑘=+∞∑
𝑘=1

𝑝 (𝑎∗ |𝑖 𝑗 = 𝑘 ;Θ)𝑝 (𝑖 𝑗 = 𝑘 ;Θ) (8.22)

Assuming there are𝑀 −1 change points in the time series, from (8.2) we have:

log𝑝 (x𝑖 |𝑐𝑖 𝑗 ) =
𝑗=𝑀∑
𝑗=1

log𝑝 (𝑥 𝑗 ) (8.23)

= log𝑝 (𝑥1:𝑐1−1) + log𝑝 (𝑥𝑐1:𝑐2) + . . . (8.24)

Hence, the problem (8.1) can be rewritten in the recursive form:

min
𝑐 𝑗

𝑗=𝑀∑
𝑗=1

log𝑝 (𝑥 𝑗 )

= min
𝑡≤𝑇−𝑀

(
log𝑝 (𝑥1:𝑡 ) + min

𝑐 𝑗 , 𝑗≥2

𝑗=𝑀∑
𝑗=2

log𝑝 (𝑥 𝑗 )
) (8.25)

The equation suggests that the problem of finding 𝑀 change points can be
decomposed into solving for 𝑀 − 1 optimal change points for all subsequences of
the original time series starting at different time. It was shown that the complexity
of this algorithm is 𝑂 (𝐾𝑇 2) [200].

8.3.5 Gibbs sampling

Returning to Equation (8.22) and suppose one segment 𝑥𝑖 𝑗 (of one particular time
series x𝑖) is considered.



8.3. Methodology 169

𝑝 (𝑥𝑖 𝑗 |𝑋−𝑖 𝑗 ;Θ) = 𝑝 (𝑥𝑖 𝑗 |𝑋−𝑖 𝑗 , 𝑎∗)
𝑘=+∞∑
𝑘=1

𝑝 (𝑎∗ |𝑖𝑖 𝑗 = 𝑘,𝑋−𝑖 𝑗 ;Θ)

𝑝 (𝑖𝑖 𝑗 = 𝑘 |𝑋−𝑖 𝑗 ;Θ)

= 𝑝 (𝑥𝑖 𝑗 |𝑎∗)
𝑘=+∞∑
𝑘=1

𝑝 (𝑎∗ |𝑎∗(𝑘)−𝑖 𝑗 ;Θ)𝑝 (𝑖𝑖 𝑗 = 𝑘 |𝑖
(𝑘)
−𝑖 𝑗 ;Θ)

(8.26)

It is clear that the two terms under summation are posterior predictive distri-
bution. Similarly to the Dirichlet Process prior on the number of change points,
define 𝑛(𝑘)−𝑖 𝑗 the number of segments in 𝑋 , apart from the segment under consider-
ation, that are assigned to cluster (of “slopes”) 𝑘. We consider the last term:

Clusters for which 𝑛(𝑘)−𝑖 𝑗 > 0:

𝑝 (𝑖𝑖 𝑗 = 𝑘 |𝑖 (𝑘)−𝑖 𝑗 ;Θ) = 𝑝 (𝑖𝑖 𝑗 = 𝑘 |𝑖
(𝑘)
−𝑖 𝑗 ;𝛼) =

𝑛(𝑘)−𝑖 𝑗
(∑𝑚𝑀𝑖) − 1 + 𝛼

(8.27)

All others combined:

𝑝 (𝑖𝑖 𝑗 ≠ 𝑖𝑖 ′ 𝑗 ′ for all 𝑖 𝑗 ≠ 𝑖′ 𝑗 ′|𝑖 (𝑘)−𝑖 𝑗 ;𝛼) =
𝛼

(∑𝑚𝑀𝑖) − 1 + 𝛼 (8.28)

The middle term of (8.26) depends on the specific model of inference we
choose. If model (8.11) is used, one may have to sample for the posterior mean
first [196]:

𝜇𝑘 |𝑎∗(𝑘)−𝑖 𝑗 ∼ N
(
𝑎𝑘𝑛𝑘𝜏𝑘 + 𝜇0𝜏0
𝑛𝑘𝜏𝑘 + 𝜏0

,
1

𝑛𝑘𝜏𝑘 + 𝜏0
+ 𝜎2𝜖

)
(8.29)

𝑛𝑘 is the number of segments assigned to cluster 𝑘, and 𝜏𝑘 , 𝜏0 are the precision
(inverse of variance) of the 𝑘th cluster and the prior value respectively. Derivation
details can be found in [196]. The value of the middle term then follows Equation
(8.8).

On the other hand if model (8.12) is chosen, conjugacy allows a closed-form
of the predictive posterior distribution:

𝑎∗ |𝑎∗(𝑘)−𝑖 𝑗 ;Θ ∼ 𝑡𝜈𝑛−𝐷+1(𝜇𝑛,Λ𝑛 (𝜅𝑛 + 1)/(𝜅𝑛 (𝜈𝑛 − 𝐷 + 1))) (8.30)

where 𝑡 (·) is the p.d.f for the multivariate Student distribution [201]. Let 𝑎𝑘 be
the mean of all 𝑎∗ assigned to cluster 𝑘, the parameters are calculated as follows:
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𝜇𝑛 =
𝜅0

𝜅0 + 𝑛𝑘
+ 𝑛𝑘
𝜅0 + 𝑛𝑘

𝑎𝑘

𝜅𝑛 = 𝜅0 + 𝑛𝑘
𝜈𝑛 = 𝜈0 + 𝑛𝑘

Λ𝑛 = Λ0 + 𝑆 +
𝜅0𝑛𝑘
𝜅0 + 𝑛𝑘

(𝑎𝑘 − 𝑎0) (𝑎𝑘 − 𝑎0)⊺

𝑆 = (𝑎𝑘 − 𝑎𝑘)⊺ (𝑎𝑘 − 𝑎𝑘)

(8.31)

It is worth mentioning that the coupling between Σ𝑘 and the variance for the
cluster mean 𝜇𝑘 can be troublesome. However, many sampling schemes were pro-
posed to circumvent this problem which can also be adopted here [185].

Using Bayes formula:

𝑝 (𝑖𝑖 𝑗 = 𝑘 |𝑖 (𝑘)−𝑖 𝑗 , 𝑋 ) ∝ 𝑝 (𝑋 |𝑖𝑖 𝑗 = 𝑘, 𝑖
(𝑘)
−𝑖 𝑗 )𝑝 (𝑖𝑖 𝑗 = 𝑘 |𝑖

(𝑘)
−𝑖 𝑗 )

= 𝑝 (𝑥𝑖 𝑗 |𝑖𝑖 𝑗 = 𝑘, 𝑖 (𝑘)−𝑖 𝑗 )𝑝 (𝑖𝑖 𝑗 = 𝑘 |𝑖
(𝑘)
−𝑖 𝑗 )

(8.32)

Both of these two terms are already given by Equation (8.27), (8.28), (8.29)
and (8.26). The pseudo-code for the algorithm described in section 8.3 is shown
in Algorithm 8.1.

8.4 EXPERIMENTS

We performed unsupervised segmentation on a small extract of lateral trajectories
from the NGSIM-101 dataset [187], specifically belonging to the chunk of trajec-
tories collected from 8:00 AM to 8:15 AM, to demonstrate the functioning of the
method. Among over 200 trajectories confined to the first 40 seconds, we filtered
out 15 trajectories that surely contain at least 1 change point (|𝑥𝑡=40 −𝑥𝑡=0 | > 7𝑓 𝑡).
The trajectories are visualized in Fig. 8.2.

The hyper-parameters are summarized in Table 8.1.
Algorithm 8.1 was implemented in R 4.1.2 aarch64-apple-darwin20, run-

ning on macOS 12.1 (Apple Macbook Pro, SoC Apple M1, 16GB Unified Mem-
ory). One big iteration costs around 20 seconds to complete.

To measure the performance, all the 15 time series were human labeled and the
number of change points, the location of change points as well as characteristics
of the slopes of the segments are compared.

The learned number of change points were shown in Table 8.2. Because the
number of change points is quite invariant across all time series, we see our algo-
rithm matches the ground truth values for most of the time series (between 2 and
3). The third time series has an abnormally high number of change points, with
longer than usual lane changing time (Fig. 8.6), and our algorithm failed to detect
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Algorithm 8.1: Lateral Trajectory Unsupervised Segmentation

1: 𝑁𝑐𝑝 ← 1 ⊲ Max. n. change points
2: 𝑁 ← 1 ⊲ Max. n. clusters
3: while 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟_𝑚𝑎𝑥 do
4: for 1 ≤ 𝑖 ≤ 𝑚 do
5: for 1 ≤ 𝑘 ≤ 𝑁𝑐𝑝 do
6: 𝑝 (𝑀𝑖 = 𝑘 |·) ← Eq. (8.14)
7: end for
8: 𝑝 (𝑀𝑖 = 𝑁𝑐𝑝 + 1|·) ← Eq. (8.17)
9: 𝑀𝑖 ∼ 𝑝 (𝑀𝑖 |·) ⊲ Sample from 𝑝 (𝑀𝑖 |·)

10: Run dynamic programming to solve (8.25) for 𝑐𝑖 𝑗 .
11: end for
12: Get segments from the change points 𝑐𝑖 𝑗 and corresponding slope values

𝑎∗ from (8.5).
13: while 𝑖𝑡𝑒𝑟2 < 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔_𝑖𝑡𝑒𝑟 do
14: for each segment do
15: for 1 ≤ 𝑘 ≤ 𝑁 do
16: 𝑝 (𝑖𝑖 𝑗 = 𝑘 |·) ← Eq. (8.27)
17: end for
18: 𝑝 (𝑖𝑖 𝑗 = 𝑁 + 1|·) ← Eq. (8.28)
19: end for ⊲ 𝑝 (𝑖𝑖 𝑗 |·) is the second term of (8.32)
20: Calculate the first term of (8.32).
21: Sample 𝑖𝑖 𝑗 from 𝑝 (𝑖𝑖 𝑗 |·).
22: Merge consecutive segments belonging to the same cluster.
23: end while
24: end while
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Table 8.1: Hyper-parameters used in the algorithm

Parameter Value
𝜇0 0
Σ0 0.1
𝜎2𝜖 0.05
𝛼 0.1
𝛼𝑐𝑝 1e-126
𝜈0 1
𝜅0 5
Λ0 0.5
max_iter 3
clustering_iter 750
basis [1, 2, . . . , 30]

Table 8.2: Detected number of change points of 13 time series (TS). GT are ground truth values,
US are values obtained by the algorithm. Time series 11 and 15 were not shown since they
correspond to 2 vehicles joining the highway from a frontage road.

TS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
GT 2 2 6 2 2 3 2 2 3 3 - 2 2 2 -
US 2 2 2 2 2 3 2 2 3 3 - 2 2 2 -

the lane changing attempts. This is due to the assumption that all time series share
similar distribution of the number of change points, a constraint enforced by the
Dirichlet Process prior on the number of change points.

The algorithm revealed three clusters whose means are 0.003501827,−1.951116
and 2.152781. These correspond to the lane keeping behavior, lane changing to the
left and lane changing to the right respectively, with the numerical value indicating
the average lateral velocity (in ft/s). Fig. 8.6 and 8.7 shows the change points and
the mean of the assigned clusters of the segments.

Fig. 8.8 shows the histogram of the slopes of the segments, where the three
clusters can clearly be seen. Overall, the lane changing clusters have a much larger
variance than the lane-keeping cluster, but it is important to note that because
some time seriesmight be incorrectly segmented (such as Time series 3), the results
might not fully reflect outlier behaviors.

There is a caveat to this analysis: the small sample size prevents generaliza-
tion of these results, but nevertheless, the algorithm has exhibited very good seg-
mentation results, with varying number of change points and unknown clusters
of “slopes” exhibited in the time series. Generalization of the method to other
types of change point such as changes in variance should be straightforward. The
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Figure 8.6: Green dots are original trajectory data, and red dots are reconstructed trajectory
data. The graphs show change points (breaks in red dots curve) and the cluster means (text at
change point) of several time series in the dataset.
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Figure 8.7: Change points (breaks in red dots curve) and the cluster mean (text at change
point) of several time series in the dataset.
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Figure 8.8: Histogram of the segment slopes.

results from the segmentation process can also be used to design a lane change
detector which can help sending appropriate V2X messages [202], automatic ac-
tivation of blinkers and help save redundant message transmission in Collective
Perception [11].

8.5 CONCLUSION

In this chapter, we have presented a novel algorithm that performs simultaneous
change point detection and clustering of similar segments. The latter provides in-
formation about what kind of information for the change point detector to look
for, while both are constrained on the complexity by the Dirichlet Process as pri-
ors. Good segmentation results were achieved on a small extract of the NGSIM
dataset, and the yielded cluster characteristics were able to revealed the average
lane-changing velocity, as well as three corresponding modes: lane-keeping, lane-
changing to the left and lane-changing to the right. These results, albeit simple,
could in principle be generalized to more complex traffic situations without the
need to hard-code the traffic laws and road scenarios, as well as paving the way
to further applications in Intelligent Transporation Systems, such as in automatic
blinker activation, turn warning systems as well as in various V2X applications.
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9
Multidimensional Scaling: Hidden Gems
in Trajectory Clustering and Traffic Com-
parison in SimilarThunderstormDays

Abstract
In this chapter, we address two related problems related to air traffic pattern

comparison on similar weather days: (1) In trajectory clustering, the result heavily
depends on the algorithm’s parameters. The sub-optimal choice of these parame-
ters could lead to sub-optimal results that are often difficult to interpret as the
relationships between clusters may not be clear. Is there a way to visualize and
anticipate these clusters in advance as a sanity check? The other problem is that
(2) given two periods of time, is there any way to determine if the air traffic sit-
uations are similar and if not, is there a quick way to tell where the differences
are? Multidimensional Scaling (MDS) is found to be a common solution to these
two problems by presenting the data in lower dimensions, allowing visualization
of the data structure. However, traditional MDS is usually an underdetermined
problem, meaning multiple solutions may exist. To this end, we propose a two-
step MDS method that places several flight path embeddings first, then uses these
“training” embeddings to constrain the embeddings of the remaining flight paths
in the dataset. As an example application, we find two dates with similar thun-
derstorm developments at Dallas Fort Worth (DFW) airport and use MDS to
compare the trajectory embeddings. Compared to other dimensionality reduction
techniques such as PCA, MDS gives valid low-dimensional embeddings for many
machine learning tasks such as clustering. Visualization of the embeddings not
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only allows the detection of anomalies but also the localization of the impact on
arrival patterns.
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9.1 INTRODUCTION

As demand for air travel returns following the outbreak of the COVID-19 pan-
demic, it is reasonable to expect that the rate of growth returns to the pre-pandemic
level, which was 9.7% annually [203]. Automation could help lighten the load for
air traffic controllers while increasing the safety and efficiency of the system. As
a result, a number of different theories and tools were developed to help better
manage the situation in the context of weather uncertainty, increasing operational
efficiency and travelers’ comfort.

While Standard Instrument Departure (SID) and Standard Instrument Ar-
rival (STAR) are available for most terminal areas, the inherently complex nature

This work was conducted in collaboration with the Intelligent Aerospace Systems Lab (IASL) at
George Washington University in Washington, D.C., USA.
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and a significant number of flight constraints prevent many aircraft from taking
standard departure or arrival procedures. In addition, the presence of convec-
tive weather or thunderstorms in the terminal area further complicates decision-
making, leading to diverse maneuvers such as holding and diversion for pilots and
air traffic controllers. This gives rise to the problem of identifying these maneu-
vers from historical aircraft trajectories, as well as establishing relationships among
weather, airport status and trajectory patterns. While the latter is considered cen-
tral to the development of assistive decision-making tools, the value of the former
cannot be overlooked and is typically achieved by using a trajectory clustering al-
gorithm. Any sub-optimal choice of clustering parameters will lead to results that
are difficult to interpret and use, and a lot of trajectory plotting is required to make
sense of the relationships between the clusters.

Multidimensional Scaling (MDS) is a class of unsupervised learning methods
that represent a set of objects from similarity (or dissimilarity) measures between
pairs of objects in low-dimensional space. The hidden structure of the dataset is
then revealed and can be investigated visually, which is often not possible when
considered in the original high-dimensional domain (see Fig. 9.1).

In this context, MDS can be considered as a data visualization tool, and is
similar to the first step of all clustering algorithms: revealing the underlying data
structure but different in that it does not yet associate the data with clusters. For
example, in Fig. 9.1 if the parameters are not chosen carefully enough, one might
end up with four large clusters of trajectories. This result, while still meaningful,
does not reveal the subtle features hidden in the “small satellite clusters” around
the dense centroids of these 4 clusters. These correspond to different selections of
the Final Approach Fixes and could have significant implications as these could ex-
plain the impact of thunderstorms on traffic. Clearly, MDS gives us more insights
into the data than simply looking at the clustering results from any algorithm such
as DBSCAN. As an application, we give an example of how MDS can be used to
visualize flight tracks at Dallas Fort-Worth (DFW) airport with similar thunder-
storm development. We also give details about how these two dates can be found
with a pruned tree-search method from the calculation of image distance. Overall,
the contributions of the chapter include:

• Showing that MDS gives appropriate low-dimensional embeddings for ma-
chine learning tasks such as clustering (in contrary to PCA for instance
[204]).

• Through a variation of MDS (called CMDS, presented below), the under-
determined problem of MDS becomes determinable, and thus a unique so-
lution is obtained.

• As an example application, MDS/CMDS is used to interpret the trajecto-
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Figure 9.1: (b) The results of Multidimensional Scaling (MDS) of all aircraft trajectories land-
ing at DFW on various dates in 2020 and 2021 (a), represented in UTM coordinates, with
𝑞 = 𝑛𝑑𝑖𝑚 = 2. The four clusters A, B, C, and D correspond to four main approaches from the
South-West (SW), North-East (NE), North-West (NW) and South-East (SE) directions. There
are smaller “subclusters” around each main cluster which correspond to different Final Ap-
proach Fixes that were taken. Sub-optimally tuned trajectory clustering usually omits this sub-
tle feature.
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ries and understand the difference in air traffic situations in the presence of
similar thunderstorm developments.

The rest of the chapter is organized as follows. In Section 9.2, we will review some
related works about trajectory clustering and attempt to distinguish between com-
mon approaches (e.g., DBSCAN, K-means clustering,...) and clustering of the
output of the embeddings by MDS. Section 9.3 is devoted to the derivation of
the solution to the Constrained MDS problem, while the interpretation of trajec-
tory embeddings is presented in Section 9.4. We present a method to recognize
similar thunderstorm developments across different dates and times in Section 9.5
and perform a comparison of trajectories using their embeddings resulting from
Constrained MDS. We conclude the chapter with Section 9.6.

9.2 RELATEDWORK

Dimensionality reduction is an umbrella term formany techniques developed through-
out the field of statistics andmachine learning that aim to find amore parsimonious
representation of the data for various tasks such as inference, denoising, and com-
pression. Several examples include Principal Component Analysis (PCA) [205],
Fisher’s Linear Discriminant Analysis (LDA) [206], Locality Preserving Projec-
tions (LPP) [204]... Among them, MDS has a tight connection to clustering algo-
rithms since under some constraints, clustering on the original high-dimensional
space is exactly the same as clustering on the low-dimensional MDS embeddings.

Due to the attractiveness of computational cost, the idea of performing clus-
tering on low-dimensional embeddings has been pursued several times. In [31],
a waypoint-based trajectory clustering framework was proposed to identify anom-
alous aircraft trajectories and compute airspace complexity. Some of these ideas
were explored again in [30], where Functional Principal Component Analysis was
applied to learn the linear operator that projects aircraft trajectories onto a reduced
dimension Euclidean space and a sliding window was proposed to perform real-
time identification of anomalous trajectories. However, as noted in [204], while
PCA yields the most optimal linear operator in terms of mean-square error, the
locality and hence, manifold-related structural information may not be present
on the low-dimensional embeddings of the trajectories. Consequently, it was sug-
gested that clustering on PCA embeddings should be avoided. However, we argue
in this chapter that this idea is still valid as long as the embeddings were obtained
from MDS. However, as will be demonstrated later, the success of the clustering
algorithms depends heavily on how the residual errors of the embeddings’ place-
ment.

While not being the key part of the chapter, we also present several works of lit-
erature regarding the application problem of studying meteorological effects on air-
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𝜹𝟐𝟑

Figure 9.2: Illustration of the MDS. The embeddings, which are the positions of the 3 points
on the right side were computed such that the distances between those 3 points are similar to
the distances between the 3 original trajectories, given by the Δmatrix.

craft trajectories. In [207], a clustering algorithm of en-route Weather Impacted
Traffic Index (WITI) based on minimum variance optimization was proposed to
identify common meteorological scenarios over the U.S. national airspace. [208]
proposed multiple methods to retrieve historical meteorological data to determine
the presence of a Ground Delay Program (GDP) while [209] presented the train-
ing of an ensemble of decision trees with Bootstrap aggregation (BDT) to pre-
dict the days of restrictive miles-in-trails (MIT) constraints. Likewise, in [210]
the authors showed the construction of a logistic model tree (LMT) to classify
weather scenarios associated with GDP. Finally, [211] presented a neural network
to predict the average delay and number of flights impacted from direct parsing of
Meteorological Aviation Routine Weather Report (METAR) data.

9.3 MDS OF AIRCRAFT TRAJECTORIES

9.3.1 Background on MDS

The problem of MDS involves representing 𝑛 objects (could be aircraft trajecto-
ries, people, animals...), usually in high-dimensional space R𝑝 by 𝑛 points in low-
dimensional space R𝑞 with 𝑞 << 𝑝. While 𝑝 could potentially be infinite in the
case of functional data, a time-sampled vector could be used in place [212] (Figure
9.2). We define S to be the set of original objects: S = {𝑥𝑖 ∈ R𝑁×𝑓 , 1 ≤ 𝑖 ≤ 𝑛}
and 𝑆 to be the set of embeddings: 𝑆 = {𝑦 𝑗 ∈ R𝑞, 1 ≤ 𝑗 ≤ 𝑛}. Let Δ = [𝛿𝑖 𝑗 ] ∈
R𝑛×𝑛, 1 ≤ 𝑖, 𝑗 ≤ 𝑛 be the matrix of distance between objects pairwise with

𝛿𝑖 𝑗 = 𝑑 (𝑥𝑖, 𝑥 𝑗 ), 1 ≤ 𝑖, 𝑗 ≤ 𝑛, (9.1)
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where 𝑑 (·, ·) is a distance function between original objects. If 𝑑 (·, ·) is a metric,
then obviously Δ is symmetric. Examples include Euclidean, Frechet. In case of
the Euclidean distance, with 𝑧𝑖, 𝑧 𝑗 ∈ R𝑁×𝑓 ,

𝑑 (𝑧𝑖, 𝑧 𝑗 ) =

√√√ 𝑓∑
𝑙=1

𝑁∑
𝑘=1

(
𝑧𝑖 [𝑘, 𝑙] − 𝑧 𝑗 [𝑘, 𝑙]

)2 (9.2)

and 𝑑 (𝑍 ), 𝑍 ∈ R𝑞×𝑛 is defined by
𝑑 (𝑍 ) = [𝑑 (𝑍·,𝑖𝑍·, 𝑗 )]𝑖, 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛 (9.3)

where 𝑍·,𝑖 denotes the 𝑖th column of 𝑍 , and 𝑍𝑖,· denotes the 𝑖th row of 𝑍 . We will
keep these notations consistent throughout the remainder of the chapter.

Finding the embeddings is equivalent to minimizing the raw stress function
[213]:

𝑌 ∗ = arg min
𝑌∈R𝑞

𝜎𝑟 (𝑌 )

where 𝜎𝑟 (𝑌 ) =
∑
𝑖< 𝑗

𝑤𝑖 𝑗
(
𝑑𝑖 𝑗 (𝑌 ) − 𝛿𝑖 𝑗

)2 (9.4)

where 𝑤𝑖 𝑗 denotes the importance of the distance between the pair 𝑥𝑖 and 𝑥 𝑗 and
𝑑𝑖 𝑗 (𝑌 ) = [𝑑 (𝑌 )]𝑖, 𝑗 . Practically, we may assign 𝑤𝑖 𝑗 = 0 if the distance between 𝑥𝑖
and 𝑥 𝑗 is not available. One particular case is that either 𝑥𝑖 or 𝑥 𝑗 is missing, and the
other case is in unfolding [212]. Usually, the problem of (9.4) is solved through
the SMACOF algorithm by iterating the Guttman transform [214], though the
convergence rate is quite slow [215]. It is worth mentioning that faster variations
are available [216,217].

9.3.2 Data Source

Trajectory data was provided by OpenSky [218], which aggregated ADS-B pack-
ets from various volunteer receivers deployed worldwide. Naturally, ADS-B pack-
ets could be corrupted and affected data points were replaced by linear interpolation
values of two nearest time points. We also took out trajectories that originated in-
side the 150km radius and resampled all the series at the rate of 1s. A total number
of 64 thunderstorms were collected according to the criteria described below, with
the earliest one occurring on 4th March 2020, and the latest one on 24th October
2022. Corresponding to these thunderstorm time periods, a total number of 3,539
aircraft trajectories were admitted to the analysis.

For thunderstorm detection, Echo Top and Vertically Integrated Liquid (VIL)
are typically used. Echo Top is the highest level that the radar can detect a min-
imum reflectivity of 16dBz, which usually coincides with the height of precipita-
tion. On the other hand, VIL estimates the total precipitation in the cloud. [219]
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conjectured that the weather impact on the pilot’s decisions can be quantified by
evaluating these two parameters. Additionally, VIL Density, defined as VIL over
EchoTopwas proposed. This was done to resolve some inherent problems with the
VIL, including identifying and assessing the severity of thunderstorms, especially
if large hail was present. VIL was used in [219] to calculate the weather avoidance
field (CWAP), which contains significant diversion areas due to the presence of
severe convective weather activities. In this chapter, the public database of mete-
orological information High-Resolution Rapid Refresh (HRRR) [220] was em-
ployed to extract the VIL, Echo Top and VIL Density for an area of radius 150km
from Dallas Fort-Worth Airport (DFW). HRRR contains real-time meteorolog-
ical parameters with resolution up to 3km updated every 30 minutes. A severe
thunderstorm is considered as present in the terminal area if within the 150km ra-
dius, the peak VIL density exceeds three, which is associated with the possibility
of severe hail [221].

9.3.3 MDS Results

Scikit-learn [222] was used to compute the 2D embeddings of all aircraft trajec-
tories during thunderstorm activities. The data structure is readily apparent from
looking at the MDS embeddings in Fig. 9.1(b). For instance, we should expect
there to be four main clusters and consequently, a clustering algorithm should have
the parameters tuned to obtain 4 clusters as a result.

Obviously, if the representation is accurate, it should make hardly any differ-
ence between performing clustering directly on the trajectory data and on the tra-
jectory embeddings. Fig. 9.3 confirms this similarity. This feature is unique to
MDS, as it is not guaranteed for other dimensionality reduction techniques such
as PCA [204]. Fig. 9.1(b) also provides insight into the recognition of uncom-
mon, irregular arrival patterns. Trajectories represented by embeddings lying in
sparse areas are less commonly observed. Dense areas are usually found around
the Standard Instrument Arrival (STAR) patterns.

The embeddings, however, provide an greater understanding of the situation.
Fig. 9.4 zooms in on cluster A shown in Fig. 9.1(b). For instance, trajectories
1158, 1885, and 3407 correspond to landings from the south of the airport, thus
placed in the bottom half of the cluster. It is also clear that the trajectory 1967,
lying in the dense area, seems to be the popular choice and indeed coincides with
the standard arrival at DFW. By continue plotting several trajectories from the
dense areas of Fig. 9.1(b), we can make the similar remarks:

1. Clusters A, B, C, and D are associated with four approaches from the SW,
NE, NW and SE directions,

2. The bottom part of cluster A corresponds to approaches from the South of
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Figure 9.3: Performing clustering on MDS embeddings (left) and directly on the trajectory
(right) shows similar results. Each color represents one cluster. Obtained with DBSCAN.

(a) Embeddings of cluster A.
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(b) Trajectories corresponding to cluster A

Figure 9.4: Zoom in on cluster A, there exist several sub-clusters whose centroids’ correspond-
ing trajectories are plotted on the right. Denser areas denote more popular patterns.
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Figure 9.5: 25% set of trajectories

the airport,
3. The top part of cluster B corresponds to approaches from the South of the

airport.

A visual inspection of MDS embeddings reveals these subtle features that are
not immediately clear from looking at the original trajectory dataset (Fig. 9.1).
Uncommon arrival patterns are also easy to identify since their embeddings lie in
the sparse areas of the figure.

9.4 TECHNICAL APPROACH

9.4.1 Two-step MDS

The problem (9.4) is nonlinear and often contains a large number of local minima.
In other words, for the same MDS problem, there could be multiple solutions that
yield the same stress. As a result, embeddings resulting from different MDS runs
cannot be compared against each other.

As an example, instead of the whole dataset, we perform MDS on just 25% of
the data points. The result is shown in Fig. 9.5. Despite these 25% data points
being extracted from the same original dataset, not only were the clusters placed
at different coordinates compared to Fig. 9.1(b), but the ordering also changed as
well. As a result, remarks made about clusters such as 1), 2), 3) in Section 9.3.3
cannot be transferred to this new scenario.

To circumvent this problem, we propose a two-step MDS as illustrated in Fig.
9.6. From the training set of aircraft trajectories, we perform traditional MDS



9.4. Technical Approach 186

Figure 9.6: Two-step MDS algorithm.

presented in Section 9.3.3 to obtain the training embeddings. Then, for the test
set of trajectories, not only are the distances between themselves computed but
also the distances between test and training trajectories. Then, by treating the
training embeddings as fixed, embeddings of the test trajectories are computed by
optimizing an augmented stress function through an algorithm called Constrained
MDS (CMDS). This algorithm is presented in Section 9.7.2.

Due to the additional constraints imposed by training embeddings, the place-
ment of test embeddings becomes a determined or even overdetermined problem
where a unique solution can be expected. This allows the reuse of remarks formerly
made about training embeddings, similar to Section 9.3.3.
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9.4.2 Derivation of CMDS

We define two additional sets of trajectories, T = {𝑐 𝑗 , 1 ≤ 𝑗 ≤ 𝑚} and S =
{𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛}. The set T includes “training trajectories”, which is the train-
ing set for computation of the “training embeddings”. The other set S includes
trajectories which we wish to find their corresponding embeddings, not only with
regard to the distances between themselves 𝛿sym, but also to the distances to the
anchor embeddings 𝛿a. Intuitively, the training embeddings serve as “landmark”
to constrain the test point embedding placement thus yielding a robust solution
against different initial solutions. Suppose the embeddings of A are given by 𝐴,
which is the solution to the traditional MDS problem in Section 9.3.3. We define
the posterior stress function as:

𝜎𝑝 (𝑌 ) =
∑

1≤𝑖< 𝑗≤𝑛
𝑤𝑖 𝑗 (𝑑𝑖 𝑗 (𝑌 ) − 𝛿sym,𝑖 𝑗 )2

+
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗 (𝑑a,ij(𝑌,𝐴) − 𝛿a,𝑖 𝑗 )2
(9.5)

The first sum is similar to that of traditional MDS, while the second sum expresses
the constraints in the relative positions of the test embeddings compared to the
training embeddings. For convenience, we will call the first term within-set stress
and the second term between-sets stress. Suppose 𝑝 = dim(𝑐 𝑗 ) = dim(𝑥𝑖),∀𝑐 𝑗 ∈
A, 𝑥𝑖 ∈ T , we can extend the distance function (9.2):

𝑑a(𝑥𝑖, 𝑐 𝑗 ) =

√√√ 𝑓∑
𝑙=1

𝑁∑
𝑘=1

(
𝑥𝑖 [𝑘, 𝑙] − 𝑐 𝑗 [𝑘, 𝑙]

)2 (9.6)

and thus,

Δsym = [𝛿sym,𝑖 𝑗 ]𝑖, 𝑗
𝛿sym,𝑖 𝑗 = 𝑑 (𝑥𝑖, 𝑥 𝑗 ), 𝑥𝑖, 𝑥 𝑗 ∈ T

(9.7)

and,

Δa = [𝛿a,𝑖 𝑗 ]𝑖, 𝑗
𝛿a,𝑖 𝑗 = 𝑑𝑎 (𝑥𝑖, 𝑐 𝑗 ), 𝑥𝑖 ∈ T , 𝑐 𝑗 ∈ A

(9.8)

Because the training embeddings and the test embeddings lie in the same Euclid-
ean space R𝑞, we can rewrite (9.3) as:

𝑑a(𝑌,𝐴) = [𝑑 (𝑌·,𝑖, 𝐴·, 𝑗 )]𝑖, 𝑗 (9.9)
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Like before, we seek for the optimal embeddings of test trajectories such that the
posterior stress function is minimized. The CMDS problem is about finding

𝑌 ∗ = arg min
𝑌∈R𝑞

𝜎𝑝 (𝑌 ) (9.10)

Note that the training embeddings do not participate as decision variables and
therefore remain invariant across different attempts to optimize (9.10). This is the
key difference between MDS and CMDS.

9.4.3 SMACOF for Solving CMDS

Algorithm 9.1 solves the CMDS problem. It involves iterating the Constrained
Guttman Transform until convergence. The complexity of the algorithm was not
demonstrated due to the scope of this chapter, but it was demonstrated experimen-
tally that it was fast. For a detailed derivation of the expressions, we refer readers
to Section 9.7.2.

Algorithm 9.1: SMACOF algorithm for Constrained MDS

1: Set initial solution 𝑌 [0] and compute the Constrained MDS stress function
𝜎𝑝 (𝑌 [0]) = 𝜎 [0]𝑝 .

2: while |𝜎 [𝑘]𝑝 − 𝜎
[𝑘−1]
𝑝 | > 𝜖 and 𝑘 < 𝑘max do

3: 𝑘 ← 𝑘 + 1.
4: 𝑌 [𝑘] = RHS of Equation (9.28).
5: 𝑍 ← 𝑌 [𝑘] .
6: Recompute 𝜎 [𝑘]𝑝 .
7: end while

9.5 NUMERICAL RESULTS: VISUALIZATION OF AIR TRAFFIC FOR COMPARISON
BETWEEN TWO DATES WITH SIMILAR THUNDERSTORM DEVELOPMENT

9.5.1 Interpretation of Results

Following the method introduced in Section 9.7.1, the two dates of 12th April
2022 18:00 and 17th March 2021 04:45 were found to have similar thunderstorm
development: the storms were formed at the airport center, then gradually moved
towards the SE (Fig. 9.9). They also lasted for a similar period of time, with a
similar maximum VIL density. The CMDS embeddings allow quick visualization
of air traffic during the two time periods, detailing not only whether there are
perturbations to common approach patterns, but also where the perturbations were
seen. Some remarks can be made out of Fig. 9.7 including:
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Figure 9.7: Embeddings of trajectories in two similar thunderstorm dates (query sequence
and cadidate sequence). The further away from dense areas of the anchor points, the more
anomalous the trajectory is. The plot allows visualizing both anomalies and similarities at the
same time.
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1. Cluster A in Fig. 9.7 corresponds to approaches from the SE of the airport
and was virtually avoided by both dates. Only two aircraft of the query-
ing date chose to take this approach. This could be due to the presence of
thunderstorm activities in the same area, as illustrated in Fig. 9.9.

2. Cluster C in Fig. 9.7 corresponds to approaches from the SW and were
virtually intact. However, the querying date includes embeddings located at
the bottom of the cluster, indicating that approaches were from the North
of the airport (i.e., the standard arrival), while on the candidate date, pilots
were cleared for a direct approach from the South. We think this was due to
the time of the day when on the candidate date, the thunderstorm happened
early in the morning and therefore high demand did not exist.

3. Cluster B in Fig. 9.7 corresponds to approaches from the NW and was op-
erational as well. However, the left part of the cluster includes trajectories
approaching from the South that were pushed further away from the cen-
troid on the candidate date. This indicates that these trajectories were more
on the abnormal side.

4. Finally, it is obvious that the querying date includes several flights that lie
far away from the four main clusters e.g., 34, 21 and 7. These were flights
with holding patterns. There were also trajectories 65, 63, and 68 that also
seem to lie on the uncommon part of the anchors too. They formed an
arc that connects the two main clusters, indicating the trajectories that lie
somewhere between the standard arrivals from the NE and NW of DFW.
These trajectories are shown in Fig. 9.8. It was conjectured that they were
cleared for a direct flight to the final approach fix due to low traffic demand.

9.5.2 Discussions

With the trajectories now represented in a low-dimensional embedding space, vi-
sualization, inference, classification, and prediction tasks become substantially sim-
pler than in the original high-dimensional domain of trajectories due to the curse
of dimensionality. For instance, anomaly detection can be performed almost vi-
sually in Fig. 9.7 as embeddings located in sparse areas indicate anomalies. It is
important to note that MDS is not a bijective linear transformation, and there-
fore, there is no inverse transformation from the embedding back to the original
domain.

In unsupervised learning, a distance function must typically be defined. For
example, the embeddings in Fig. 9.1 are characteristic of the Euclidean distance.
Therefore, MDS can also preview how different distance functions work. This
provides insight into the choice of distance function for the application and data
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Figure 9.8: Trajectories 65, 63, 68, among the two cluster centroids: trajectories 30 and 45
correspond to standard arrivals from the NW and NE respectively.
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Figure 9.9: The best matching between two dates: 12th April 2022 18:00 (query sequence -
above) and 17th March 2021 04:45 (candidate sequence - below).
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of interest.
Finally, it is important to note that MDS does not attempt to derive the re-

lationship between aircraft trajectories and weather factors. While the problem
goes beyond the scope of this chapter, the fact is that in many cases, machine
learning tasks performed on these low-dimensional embeddings are equivalent to
performing on the original trajectory dataset and can greatly help the intractability
associated with the latter. Hence, the value of MDS can be seen in this regard.

9.6 CONCLUSION

In this chapter, we present the application of MDS to aircraft trajectories. We in-
troduced a two-stepMDSmethod to visualize andmake trajectories from different
dates comparable. It was shown that flight tracks of aircraft arriving at DFW can
indeed be represented on a two-dimensional plane. Many interesting properties
were revealed by looking at the embeddings. Interpretation and machine learning
tasks such as clustering can be performed on MDS embeddings instead of the orig-
inal high-dimensional space, and this aspect is unique to MDS (contrary to e.g.,
PCA). An application for comparing trajectories between two thunderstorm dates
was illustrative of the method.

9.7 APPENDICES

9.7.1 Finding Similar Dates with Thunderstorm Developments

The similarity in VIL Density lays the foundation for the distance function be-
tween any two radar images. In particular, let 𝑋 ∈ R𝑚×𝑛 and 𝑌 ∈ R𝑚×𝑛 be the
query and target image respectively. We define the Gaussian kernel as𝐺 ∈ R𝑘×𝑘 of
size 𝑘. The Gaussian blurring kernel introduces some “leniency” into the position,
and allows matching the pixels in the target image at roughly the same position as
in the query image. The distance between the two images is then calculated with
the following formula [223]:

𝑅(𝑋,𝑌 ) =
∑
𝑥 ′,𝑦 ′ (𝑋 (𝑥′, 𝑦′) − 𝑌 (𝑥′, 𝑦′) ∗𝐺 (𝑥′, 𝑦′))2√∑

𝑥 ′,𝑦 ′ (𝑋 (𝑥′, 𝑦′) ∗𝐺 (𝑥′,′𝑦))2

1√∑
𝑥 ′,𝑦 ′ (𝑌 (𝑥′, 𝑦′) ∗𝐺 (𝑥′, 𝑦′))2

(9.11)

where ∗ denotes the convolution operator. This idea can be compared to the
CWAP introduced in [219].
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A thunderstorm’s development can span a period of time. To find the most
similar thunderstorm development in the past, we may adopt a strategy similar to
a pruned tree search. The keyframe is defined as the characteristic moment of the
thunderstorm and serves as the starting point of the search. This usually coincides
with the moment when a thunderstorm reaches its maximum intensity. The algo-
rithm begins with the calculation of all distances between the current keyframe and
all historical VIL Density data in the HRRR database. Then only the top 𝜈 results
were retained, and we backtracked to the previous moment in the query sequence.
The same process is repeated but this time for 𝜈 candidates. Each sequence fitness
is graded by:

𝐹 (𝑇𝑄 ,𝑇𝐶) =
∑
𝑛

𝑅(𝑇𝑄 [𝑛],𝑇𝐶 [𝑛]) (9.12)

where𝑇𝑄 [𝑛] is the 𝑛th VIL radar image of the query thunderstorm𝑇𝑄 . The results
are then presented in descending order of candidate sequence’s grades, with the
lowest score indicating the most similar thunderstorm.

9.7.2 Derivation of SMACOF for CMDS Problem

In the following, we will adapt the Scaling by Majorizing a Complicated Function
(SMACOF) algorithm specifically for Euclidean distances, both between trajec-
tories and between embeddings. While the idea can be compared to [224, 225],
much of the latter works focus on finding the exact location of tags with cellular
towers’ position known in advance. As such, the original and embedding domains
share the same number of dimensions. Nevertheless, we provide an alternate solu-
tion to the problem as follows. Equation (9.5) can be rewritten as:

𝜎𝑝 (𝑌 ) =
∑
𝑖< 𝑗

𝑤𝑖 𝑗
(
| |𝑦𝑖 − 𝑦 𝑗 | | − 𝛿sym,𝑖 𝑗

)2
+

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗 ( | |𝑦𝑖 − 𝑎 𝑗 | | − 𝛿a,𝑖 𝑗 )2

= 𝜎𝑤𝑠 (𝑌 ) + 𝜎𝑏𝑠 (𝑌 )

(9.13)
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We focus on the between-sets stress term 𝜎𝑏𝑠 first, since the other term is similar
to the raw stress function.

𝜎𝑏𝑠 (𝑌 ) =
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗 (| |𝑦𝑖 − 𝑎 𝑗 | | − 𝛿a,𝑖 𝑗 )2 =
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗𝛿
2
a,𝑖 𝑗+

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗 | |𝑦𝑖 − 𝑎 𝑗 | |2 − 2
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗𝛿a,𝑖 𝑗 | |𝑦𝑖 − 𝑎 𝑗 | |

=
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗𝛿
2
a,𝑖 𝑗 + 𝜂 (𝑌 ) − 2𝜌 (𝑌 ),

(9.14)

where we have defined:

𝜂 (𝑌 ) =
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗 | |𝑦𝑖 − 𝑎 𝑗 | |2

𝜌 (𝑌 ) =
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗𝛿a,𝑖 𝑗 | |𝑦𝑖 − 𝑎 𝑗 | |

Let the weight matrix be𝑊a = [𝑤a,𝑖 𝑗 ]𝑖, 𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚. To vectorize the
second term 𝜂 (𝑌 ), we define two additional following linear operators:

𝑅𝑊a𝑌 =



√
𝑤a,11 0 0 . . . 0 0 0√
𝑤a,12 0 0 . . . 0 0 0
...

...
...

...
...

...
...√

𝑤a,1𝑚 0 0 . . . 0 0 0
0

√
𝑤a,21 0 . . . 0 0 0

0
√
𝑤a,22 0 . . . 0 0 0

0
... 0 . . . 0 0 0

0
√
𝑤a,2𝑚 0 . . . 0 0 0

...
...

...
...

...
...

...
0 0 0 0 0 0

√
𝑤a,𝑛𝑚



𝑌 (9.15)
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and

𝑀𝑊a𝐴 =



√
𝑤a,11 0 0 0 0 . . . 0
0

√
𝑤a,12 0 0 0 . . . 0

...
...

...
...

...
...

...
0 0 0 0 0 . . .

√
𝑤a,1𝑚√

𝑤a,21 0 0 0 0 . . . 0
0

√
𝑤a,22 0 0 0 . . . 0

...
...

...
...

...
...

...
0 0 0 0 0 . . .

√
𝑤a,2𝑚

...
...

...
...

...
...

...√
𝑤a,𝑛1 0 0 0 0 . . . 0
0

√
𝑤a,𝑛2 0 0 0 . . . 0

0 0 0 0 0 . . .
√
𝑤a,𝑛𝑚



𝐴 (9.16)

In essence, the 𝑅(·) operator repeats each row of 𝑌 for𝑚 times and multiplies each
row with the corresponding weight with respect to the 𝑚th training embedding.
The 𝑀(·) operator, on the other hand, repeats the whole matrix 𝐴 vertically for 𝑛
times and multiplies each row with the corresponding weight with respect to the
𝑛th test point. Then:

𝜂 (𝑌 ) =
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗 | |𝑦𝑖 − 𝑎 𝑗 | |2

= 𝑇𝑟 ((𝑅𝑊a𝑌 −𝑀𝑊a𝐴)>(𝑅𝑊a𝑌 −𝑀𝑊a𝐴)),
(9.17)

where 𝑇𝑟 denotes the trace of a matrix. It should be obvious that while 𝜂 (𝑌 ) is
linear and convex, the first-order term 𝜌 (𝑌 ) adds the nonlinearity and removes
convexity from the problem. Similar to SMACOF, we will majorize 𝜌 (𝑌 ) and
adopt an interative scheme that yields a monotonic converging sequence of 𝜎𝑏𝑠 to
the local minimum.

Using Cauchy-Schwarz:

〈𝑧𝑖 − 𝑎 𝑗 , 𝑦𝑖 − 𝑎 𝑗 〉 ≤ ||𝑦𝑖 − 𝑎 𝑗 | | | |𝑧𝑖 − 𝑎 𝑗 | |

| |𝑦𝑖 − 𝑎 𝑗 | | ≥
〈𝑧𝑖 − 𝑎 𝑗 , 𝑦𝑖 − 𝑎 𝑗 〉
| |𝑧𝑖 − 𝑎 𝑗 | |

− | |𝑦𝑖 − 𝑎 𝑗 | | ≤
−〈𝑧𝑖 − 𝑎 𝑗 , 𝑦𝑖 − 𝑎 𝑗 〉
| |𝑧𝑖 − 𝑎 𝑗 | |
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Equality is achieved when 𝑧𝑖 = 𝑥𝑖,∀𝑖. Since

−𝜌 (𝑌 ) = −
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗𝛿a,𝑖 𝑗 | |𝑦𝑖 − 𝑎 𝑗 | |

≤ −
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗𝛿a,𝑖 𝑗

| |𝑧𝑖 − 𝑎 𝑗 | |
〈𝑧𝑖 − 𝑎 𝑗 , 𝑦𝑖 − 𝑎 𝑗 〉,

this suggests defining the following weight matrix:
𝑊z = [𝑊z,𝑖 𝑗 ]𝑖, 𝑗

𝑊z,𝑖 𝑗 =
𝑤a,𝑖 𝑗𝛿a,𝑖 𝑗

| |𝑧𝑖 − 𝑎 𝑗 | |
(9.18)

Then, with some manipulations, we obtain:
−𝜌 (𝑌 ) ≤ −𝑇𝑟 ((𝑅𝑊z𝑌 −𝑀𝑊z𝐴)>(𝑅𝑊z𝑍 −𝑀𝑊z𝐴)) (9.19)

and the equality follows if and only if 𝑌 = 𝑍 . Finally, we can rewrite (9.14) as

𝜎𝑏𝑠 ≤
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗𝛿
2
a,𝑖 𝑗+

+𝑇𝑟 ((𝑅𝑊a𝑌 −𝑀𝑊a𝐴)>(𝑅𝑊a𝑌 −𝑀𝑊a𝐴))
− 2𝑇𝑟 ((𝑅𝑊z𝑌 −𝑀𝑊z𝐴)>(𝑅𝑊z𝑍 −𝑀𝑊z𝐴))

(9.20)

For convenience, let us call the right-hand side Σ𝑏𝑠 . Note that Σ𝑏𝑠 majorizes 𝜎𝑏𝑠
and gives equality if and only if𝑌 = 𝑍 . It should be immediately clear that deriving
the gradient for Σ𝑏𝑠 is now straightforward.

The raw-stress 𝜎𝑤𝑠 term is similar to the classical MDS, thus admits the same
majorization function [212]:

𝜎𝑤𝑠 ≤ Σ𝑤𝑠 =
∑

1≤𝑖< 𝑗≤𝑛
𝑤𝑖 𝑗𝛿

2
𝑖 𝑗 +𝑇𝑟 (𝑌>𝑉𝑌 ) − 2𝑇𝑟 (𝑌>𝐵(𝑍 )𝑍 ) (9.21)

with 𝑉 given by:
𝑉 =

∑
𝑖< 𝑗

(𝑒𝑖 − 𝑒 𝑗 ) (𝑒𝑖 − 𝑒 𝑗 )> (9.22)

where 𝑒𝑖 = [1𝑖= 𝑗 ] 𝑗 , i.e., a vector of zeros, except at 𝑖th entry, where it is one. The
𝐵(𝑍 ) matrix is given by:

𝐵(𝑍 ) = [𝑏𝑖 𝑗 ]𝑖, 𝑗

𝑏𝑖 𝑗 =

{
−𝑤𝑖 𝑗𝛿sym,𝑖 𝑗

| |𝑧𝑖−𝑧 𝑗 | | , for 𝑖 ≠ 𝑗 and | |𝑧𝑖 − 𝑧 𝑗 | | > 0

0, for 𝑖 ≠ 𝑗 and | |𝑧𝑖 − 𝑧 𝑗 | | = 0.

𝑏𝑖𝑖 = −
∑
𝑗≠𝑖

𝑏𝑖 𝑗

(9.23)
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Denote Σ𝑝 (𝑌 ) the majorization function of 𝜎𝑝 (𝑌 ), we can write:

Σ𝑝 (𝑌 ) = 𝑇𝑟 ((𝑅𝑊a𝑌 −𝑀𝑊a𝐴)>(𝑅𝑊a𝑌 −𝑀𝑊a𝐴))
− 2𝑇𝑟 ((𝑅𝑊z𝑌 −𝑀𝑊z𝐴)>(𝑅𝑊z𝑍 −𝑀𝑊z𝐴))
+𝑇𝑟 (𝑌>𝑉𝑌 ) − 2𝑇𝑟 (𝑌>𝐵(𝑍 )𝑍 ) +𝐶

(9.24)

where

𝐶 =
∑

1≤𝑖< 𝑗≤𝑛
𝑤𝑖 𝑗𝛿

2
𝑖 𝑗 +

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤a,𝑖 𝑗𝛿
2
a,𝑖 𝑗 (9.25)

and this term is not significant to finding the solution to the optimization problem
since it does not contain any decision variable.

Since Σ𝑝 (𝑌 ) is convex and differentiable, one may find the minimum by setting
its first derivative to zero:

0 =
𝜕

𝜕𝑌
Σ𝑝 (𝑌 ) = 2𝑅𝑊a𝑅

>
𝑊a
𝑌 − 2𝑅>𝑊a

𝑀𝑊a𝐴

− 2𝑅>𝑊z
(𝑅𝑊z𝑍 −𝑀𝑊z𝐴) +

𝜕

𝜕𝑌
Σ𝑏𝑠 (𝑌 )

= 2𝑅𝑊a𝑅
>
𝑊a
𝑌 − 2𝑅>𝑊a

𝑀𝑊a𝐴

− 2𝑅>𝑊z
(𝑅𝑊z𝑍 −𝑀𝑊z𝐴) − 2𝑉𝑌 − 2𝐵(𝑍 )𝑍

(9.26)

After some simplifications, we obtain the algebraic equation that allows finding
the minimizer of the majorization function Σ𝑝 (𝑌 ) at 𝑍 .

(𝑅>𝑊a
𝑅𝑊a +𝑉 )𝑌 = 𝑅>𝑊a

𝑀𝑊a𝐴 + 𝑅>𝑊z
(𝑅𝑊z𝑍 −𝑀𝑊z𝐴) + 𝐵𝑍 (9.27)

Usually, 𝑅>𝑊a
𝑅𝑊a +𝑉 is not invertible, but a substitution of Moore-Penrose inverse

gives the minimizer:

𝑌 ∗ = (𝑅>𝑊a
𝑅𝑊a +𝑉 )+(𝑅>𝑊a

𝑀𝑊a𝐴

+𝑅>𝑊z
(𝑅𝑊z𝑍 −𝑀𝑊z𝐴) + 𝐵𝑍 )

(9.28)

To follow the convention, we call (9.28) the Constrained Guttman Transform. The
result is obtained from iterating (9.28) and setting 𝑍 = 𝑌 [𝑘] until convergence.
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10
Real-timeLocalizedAnomalyDetection for
Identifying Non-compliant Approaches

Abstract
In this chapter, we extend the anomaly detection discussion from Chapter 4 by

considering a nuanced variation of the problem. Instead of using all accumulated
observations to test a binary hypothesis (i.e., whether observations are nominal
or abnormal), we focus on assessing whether a time series significantly deviates
from the norm at a specific moment. Typically, such assessments are made using
a nearest-neighbor algorithm, which requires the involvement of numerous data
points from the training set to test the hypothesis. However, through the use
of Functional Principal Component Analysis (FPCA), we will show that a more
refined and efficient approach is possible. We apply the algorithm to the problem
of identying non-compliant approaches at Toulouse Blagnac Airport.
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10.1 INTRODUCTION

During the final approach, pilots are typically required to follow a set of procedures,
as detailed in flight path safety management during nominal operations, to align
with the runway’s centerline and follow a 3◦ glideslope until the runway threshold.
However, there are various factors that may cause the aircraft to be too high, too
low, too fast or too slow during the final approach:

1. Pilot’s lack of familiarity with the airport or misinterpretation of landing
instrument indications.

2. Weather conditions, such as low visibility, might prompt pilots to initiate
early or late descents. Tailwinds and headwinds can cause the aircraft to
move faster or slower than usual, which could lead to overshooting or un-
dershooting the runway threshold.

3. Air traffic controller’s instructions, such as those requiring an aircraft to
maintain a higher altitude due to traffic congestion, may also contribute to
deviations from the standard glideslope.

As a result, the detection of abnormal final approaches is critical for the safety
and efficiency of aviation operations. The French Aviation Authority risk portfolio
categorizesNon-stabilizedApproaches (NSA) as those with an “interception angle
> 45◦ (or > 30◦ on parallel active approaches) and/or an intermediate leg shorter
than 30 seconds (or 2Nm for GNSS App) before the Final Approach Point (FAP)
and/or glide path interception from above and/or a non-adapted speed (greater
than 180 kts).” This definition extends the concept of a non-stabilized approach,
typically defined as occurring 1000 ft from the runway threshold, which is a strong
precursor to the risk of a go-around.

This chapter extends the methodology presented in [30], where an energy ap-
proach was presented. The motivation for anomaly detection with energy is from
the view that landing is a process of trading off altitude and speed–or in physi-
cal terms, potential energy and kinetic energy. In other words, a smooth landing
should follow a gradual decrease in both altitude and speed–not one of the two.
The total specific energy 𝐸𝑇 can be computed from:

𝐸𝑇 =
1
2
(𝐺2

𝑠 +𝑉 2
𝑧 ) + 𝑔ℎ, (10.1)

where 𝐺𝑠 is the ground speed and 𝑉𝑧 is the vertical speed. By plotting 𝐸𝑇 against
distance to runway threshold𝐷, it is possible to identify atypical approach patterns
from typical ones in an unsupervisedmanner. Clearly, this approach is better in the
sense that complex approach patterns may exist for individual airport and weather



10.2. Anomaly Detection Framework 200

Energy

Distance to
Runway Threshold

Alarm Raised
Energy higher than typical approaches

Figure 10.1: Anomaly Localization: raising alarm when energy 𝐸𝑇 is substantially higher than
what is typicall observed at the same distance to runway threshold 𝐷 .

condition, and sometimes the “by-the-book” criteria for non-stabilised approach
like descent angle or altitude that initiate the final descent may not suit all scenar-
ios.

However, the unsupervised detection approach may only provide pilots or AT-
COs with information such as “your approach has higher energy than 95% of the
approaches seen at this airport,” without specifically explaining why nor whether
it is possible to continue landing or a go-around should be initiated (Figure 10.1).

Similar to Chapter 4, real-time detection and early warning issuance to air traf-
fic controllers (ATCOs) and pilots are critical. In an attempt to address this prob-
lem, [30] used a sliding window to locally compare the dimensionality-reduced
FPCA score vector with neighboring vectors using theGlobal-Local Outlier Score
from Hierarchies (GLOSH). However, this approach introduces some delay into
the algorithm, as the first sliding window must be filled before detection can occur.
In response, we propose a probabilistic framework to detect anomalies localized at
specific distances from the runway threshold. This approach operates similarly to
the Local Outlier Factor (LOF) but does not require the entire training dataset to
compute the distance to neighbors. Consequently, the algorithm is simpler, faster,
and equivalently effective.

10.2 ANOMALY DETECTION FRAMEWORK

Figure 10.2 provides an overview of the anomaly detection framework. Similar
to the approach outlined in Chapter 4, this algorithm consists of two phases: the
learning phase and the operating phase. During the learning phase, the energy curves
of the training set are decomposed into FPCA scores, effectively reducing the di-
mensionality of the data. Subsequently, a Gaussian Mixture Model is fitted to
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Figure 10.2: Localized anomaly detection framework.

the FPCA score vectors, and the resulting model parameters are then transferred
to the operating phase. Unlike Nearest Neighbor methods, this approach does
not require the retention of a significant portion or the entirety of the training set
for the detection operation, which can be costly in terms of memory usage. The
algorithm’s reliance on compact distribution parameters makes it a more efficient
alternative.

The localized anomaly detection approach discussed in this chapter differs
from the framework introduced in Chapter 4 in its focus on identifying non-
compliant or non-stabilized approaches. In this context, the primary concern is
how the energy value at a specific distance from the runway threshold compares
to typical values observed at that same distance. The specific trajectory that leads
to this energy value at that particular moment is fully irrelevant. In contrast, the
probabilistic framework described in Chapter 4 takes into account the entirety of
all observations up to the exact moment of detection to determine whether the ob-
served trajectory deviates from the norm. In essence, the methodology presented
in this chapter is concerned with a single moment, while the previous framework
considers all observations leading up to that moment.

Figure 10.3 illustrates the 200 energy curves of A320s landing at Toulouse
Blagnac Airport. The underlying concept is that a typical approach should pass
through the dense areas of the graph, as these represent energy values frequently
observed in past landings. It may be careful for an aircraft to avoid sparse or white
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Figure 10.3: Total specific energy of aircraft landing trajectories at Toulouse Blagnac Airport
(LFBO).

areas of the graph, as these represent combinations of speed and altitude that have
not been previously encountered at similar moments.

The learning phase in this approach is analogous to the one introduced inChap-
ter 4, with one important difference: a Gaussian Mixture Model is fitted to the
FPCA scores (e.g., using the maximum likelihood method) instead of a simple
Gaussian distribution. Thismodification accommodates the possibility that FPCA
scores may not follow a normal distribution.

In a real-time detection setting, suppose the FPCA scores’ Gaussian Mixture
can be represented as:

𝑎 ∼
𝑁∑
𝑘=1

𝜋𝑘N(𝜇𝑎,𝑘 ; Σ𝑎,𝑘) (10.2)

and the FPCA decomposition is:

𝐸𝑇 (𝑡) = 𝜇𝐸𝑇 (𝑡) + Φ(𝑡)>𝑎, (10.3)

where:
Φ(𝑡) = [𝜙1(𝑡), . . . , 𝜙𝑀 (𝑡)], 𝑀 = dim𝑎
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Notice that (10.3) is an affine transformation of 𝑎, thus 𝐸𝑇 (𝑡)’s distribution is
a Gaussian Mixture as well. The following result is trivial to show:

Lemma10.1. If 𝑥 ∈ R𝑛 is a random vector that has aGaussianMixture distribution
parametrized by (𝜋𝑘 , 𝜇𝑘 , Σ𝑘), then for any affine transform 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑛,
the random vector 𝐴𝑥 + 𝑏 ’s distribution is also a Gaussian Mixture parametrized
by (𝜋𝑘 , 𝐴𝜇𝑘 + 𝑏,𝐴Σ𝑘𝐴>).

Proof. Recall that if 𝑥 follows a Gaussian Mixture, then the corresponding charac-
teristic function is:

𝜙𝑥 (𝑡) =
∑
𝑘

𝜋𝑘𝜙𝑥𝑘 (𝑡) =
∑
𝑘

𝜋𝑘 exp

[
𝑖𝑡>𝜇𝑘 −

1
2
𝑡>Σ𝑘𝑡

]
(10.4)

For the random vector 𝑦 = 𝐴𝑥 + 𝑏, the characteristic function of 𝑦 is:

𝜙𝑦 (𝑡) = 𝑒𝑖𝑡
>𝑏𝜙𝑥 (𝐴>𝑡)

= 𝑒𝑖𝑡
>𝑏

(∑
𝑘

𝜋𝑘 exp

[
𝑖 (𝐴>𝑡)>𝜇𝑘 −

1
2
(𝐴>𝑡)>Σ𝑘 (𝐴>𝑡)

])
=

∑
𝑘

𝜋𝑘 exp

[
𝑖𝑡>(𝐴𝜇𝑘 + 𝑏) −

1
2
𝑡>𝐴Σ𝑘𝐴

>𝑡

]
(10.5)

and notice that this is the exact characteristic function of a Gaussian Mixture dis-
tribution parametrized by (𝜋𝑘 , 𝐴𝜇𝑘 + 𝑏,𝐴Σ𝑘𝐴>). □

Lemma 10.1 suggests that the variable 𝐸𝑇 in (10.3) is also a Gaussian Mixture,
and that:

𝑃 (𝐸𝑇 ≤ 𝑦) =
𝑁∑
𝑘=1

𝜋𝑘𝐹𝑁

(
𝑦 − 𝜇𝐸𝑇 (𝑡) − Φ(𝑡)>𝜇𝑎,𝑘√

Φ(𝑡)>Σ𝑎,𝑘Φ(𝑡)

)
(10.6)

It is now obvious that expression (10.6) can be used to test the hypothesis 𝐻0:
the specific energy at distance to threshold 𝐷 is significantly higher or lower that
typical values, with a level of significance 𝛼 .

10.3 NUMERICAL SIMULATIONS

Figure 10.4 displays the energy curves of five randomly selected flights, derived
from radar tracks of A320s landing at Toulouse Blagnac (LFBO) airport. The
fifth flight intercepts the glideslope at a slightly lower altitude and airspeed than
usual, while flights 3 and 4 are positioned somewhat above the glideslope at ap-
proximately 8 nautical miles from the runway threshold.
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Figure 10.4: 5 random energy curves of flights landing at LFBO, along with the training set
curves in gray.

Figure 10.5 displays the real-time p-values for each flight. Ideally, these curves
should hover around 0.5. With a significance level of 𝛼 = 0.05, the red shaded rec-
tangles indicate the regions where alarms will be triggered, pointing to atypical
energy values at the corresponding distances. As discussed in Chapter 4, we ex-
clude the last 3 nautical miles of data from the analysis due to the divergence in
approximation power, which is suspected to result from the window effect.

It is obvious from Figure 10.5 that Flights 3 and 4 are positioned at the very
top, but not to the extent that would trigger an alarm. These trajectories are closed
to be considered non-compliant approaches. This observation corresponds with
the fact that these two curves also appear near the upper boundary of the traversed
learning set in Figure 10.4. As previously mentioned, Flight 5 approaches the
runway slightly shallow, but it remains within the typical range throughout its
descent.
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Figure 10.5: P-values curves corresponding to the 5 chosen flights. The red shaded rectangles
indicate 𝑝 = 0.05 and 𝑝 = 0.95. Curves hitting these rectangles should trigger alarm as the
specific energy is either significantly high or low.

10.4 CONCLUSION

In this chapter, we have extended the probabilistic framework presented in Chap-
ter 4 to address the problem of identifying localized anomalies, specifically for the
detection of non-compliant approaches in an unsupervised manner. The method-
ology requires only a training sample of energy curves and does not require any spe-
cific detection instructions for its implementation. Consequently, the algorithm
is versatile and adaptable to various airports, even those with complex landing pat-
terns. Compared to the approach presented in [30], our method does not involve
any sliding window, making it faster and more efficient. We believe that this ap-
proach can be further extended to multivariate signals and has the potential for
application in a wide range of other disciplines.
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11
Conclusion

SUMMARY

In this dissertation, we have overviewed a multitude of signal processing and ma-
chine learning issues associated with vehicle trajectories. Our exploration encom-
passes modeling, data compression, anomaly detection, dimensionality reduction,
prediction, and the unsupervised segmentation of time series that exhibit repeti-
tive and localized patterns. It is widely acknowledged that these challenges span
virtually across all Intelligent Transportation System (ITS) applications. Con-
sequently, the advancements explored in this work could significantly influence
the design and implementation of ITS in various cities and urban environments,
thereby aiding the transition towards more efficient, comfortable, and environmen-
tally friendly transportation systems and urban centers.

Random Impulses Models. When considering the increasing advancement of
AI and data-driven methodologies, some of which have been demonstrated to
surpass the expectations of researchers, it is imperative to exercise caution, partic-
ularly in the context of road safety for all participants. This caution underscores
the continued relevance and importance of signal modeling techniques. This value
is further emphasized in situations where data is scarce and cost-effectiveness is a
priority. Just as Fourier Transforms have been and continue to be the cornerstone
of stationary signal processing, Random Impulse models offer a balanced approach
between the adaptability of learning models and the rigor of mathematical models.
These models are transparent, free from any ambiguity that would impede math-
ematical analysis, and thus provide insights that can inform the design of crucial
applications that would otherwise be unfeasible. This was successfully achieved in
Chapter 3, leading to two important applications—data compression and anomaly
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detection.
V2X Channels Congestion Control. The core issue of congestion control in

Vehicle-to-Everything (V2X) channels can be addressed through the silent infer-
ence scheme, in which only the necessary information should be transmitted, while
the receiver should invest significant effort to minimize the need for frequent re-
transmission attempts from the transmitter. In Chapter 5, we investigated how
linear transformative coding could help lower the message rate by broadcasting
the dimensionality-reduced representation vector of the trajectory, which is esti-
mated in real-time using a Kalman or Particle Filter. Chapter 6 extended this
investigation by exploring the optimal solution for the silent inference problem,
revealing that a V2X message format should incorporate both the mean trajectory
and residual dynamics information to optimize the expected time between retrans-
missions. This approach resulted in a 2.5 to 4-fold improvement in message rate
while maintaining an acceptable error tolerance of approximately 3 feet.

Trajectory Filtering and Smoothing. The Random Impulses Models also pro-
pose a dynamic model for the filtering, smoothing, and prediction of future tra-
jectories by using a Gaussian Mixture Kalman Filter (GMKF). The details of the
reference implementation were discussed in Chapter 7, which demonstrated an
enhancement in the estimation confidence interval of the velocity by a factor of
two.

Anomaly Detection. The topic of Anomaly Detection was explored in Chap-
ters 4 and 10, where a probabilistic framework was introduced for real-time detec-
tion of anomalies within time series data. Chapter 4 outlined the likelihood and
Bayesian methodologies for one-shot anomaly detection. Meanwhile, Chapter 10
presented a technique to locally compare the features of a time series with others
in the training set within a compact representation domain, a method that proved
useful in the detection of unstabilized landings.

The field of unsupervised time series segmentation, closely related to the prob-
lem of changepoint detection, was also a subject of exploratory research discussed
in Chapter 8. Moreover, the aircraft landing trajectory representation and visual-
ization problem, presented in Chapter 9, offers a potent tool for visualizing and
verifying clustering results. It allows controllers and analysts to rapidly compre-
hend and assess situations, as well as facilitate comparisons of airport conditions
during events such as thunderstorms. This research also lays the groundwork for
discovering more efficient representation methods that can potentially help trans-
fer learning and expedite reinforcement learning algorithms in the future.
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FUTUREWORKS

For the Random Impulses Models, enhancements such as incorporating feedback
effects could be considered to prevent the lateral component from diverging to in-
finity. Additional applications stemming from these models could also be explored,
and it is anticipated that they may find applicability in areas such as antenna beam-
forming and radar tracking.

In the realm of Anomaly Detection, the established framework could be ex-
panded to accommodatemultivariate time series and even extend to non-continuous
variables. Lastly, the chapter onMulti-Dimensional Scaling (MDS) can be further
investigated to develop compact representations that could facilitate the learning of
air traffic situations at an airport, thereby helping transfer learning and expediting
the training process for reinforcement learning.

/\_/\
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